Skip to main content

Stress Echocardiography in Valvular Heart Disease

  • Chapter

Abstract

Major advances in diagnosis and risk stratification, combined with enormous progress in surgical valve replacement and repair, have led to improved outcomes of patients with valvular heart disease over the past 30 years. The most important indication for surgical intervention in patients with hemodynamically significant aortic or mitral valve disease is the development of symptoms, as emphasized in recent guidelines [1–3]. As symptoms may develop slowly and indolently in these chronic conditions, many patients are unaware of subtle changes in effort tolerance, even when questioned directly by their physicians. Hence, recent guidelines of both the American College of Cardiology/American Heart Association (ACC/AHA) and the European Society of Cardiology (ESC) [2, 3] have placed renewed emphasis on the role of exercise testing to provide objective evidence of exercise capacity and symptom status. In addition, while Doppler echocardiography is the method of choice for assessing severity of valvular disease, there is a growing utilization of stress two-dimensional and Doppler echocardiography to assess dynamic changes in hemodynamics in concert with the clinical findings of exercise testing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gibbons RJ, Balady GJ, Bricker JT et al (2002) ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 106:1883–1892

    Article  PubMed  Google Scholar 

  2. Nishimura RA, Otto CM, Bonow RO et al (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2438–2488

    Article  PubMed  Google Scholar 

  3. Vahanian A, Alfieri O, Andreotti F et al (2012) Guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J 33:2451–2496

    Google Scholar 

  4. Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 85:1604–1612

    Article  CAS  PubMed  Google Scholar 

  5. Gibbons RJ, Abrams J, Chatterjee K et al (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina–summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 41:159–168

    Article  PubMed  Google Scholar 

  6. Fox K, Garcia MA, Ardissino D et al (2006) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381

    Article  PubMed  Google Scholar 

  7. Schwammenthal E, Vered Z, Rabinowitz B et al (1997) Stress echocardiography beyond coronary artery disease. Eur Heart J 18(Suppl D):D130–D137

    Article  PubMed  Google Scholar 

  8. Picano E, Pibarot P, Lancellotti P et al (2009) The emerging role of exercise testing and stress echocardiography in valvular heart disease. J Am Coll Cardiol 54:2251–2260

    Article  PubMed  Google Scholar 

  9. Picano E, Pellikka PA (2014) Stress echo applications beyond coronary artery disease. Eur Heart J 35:1033–1040

    Article  PubMed  Google Scholar 

  10. Pellikka PA, Nagueh SF, Elhendy AA et al (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20:1021–1041

    Article  PubMed  Google Scholar 

  11. Sicari R, Nihoyannopoulos P, Evangelista A et al (2008) Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437

    Article  PubMed  Google Scholar 

  12. Otto CM, Pearlman AS, Kraft CD et al (1992) Physiologic changes with maximal exercise in asymptomatic valvular aortic stenosis assessed by Doppler echocardiography. J Am Coll Cardiol 20:1160–1167

    Article  CAS  PubMed  Google Scholar 

  13. Grayburn PA (2006) Assessment of low-gradient aortic stenosis with dobutamine. Circulation 113:604–606

    Article  PubMed  Google Scholar 

  14. deFilippi CR, Willett DL, Brickner ME et al (1995) Usefulness of dobutamine echocardiography in distinguishing severe from nonsevere valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol 75:191–194

    Article  CAS  PubMed  Google Scholar 

  15. Schwammenthal E, Vered Z, Moshkowitz Y et al (2001) Dobutamine echocardiography in patients with aortic stenosis and left ventricular dysfunction: predicting outcome as a function of management strategy. Chest 119:1766–1777

    Article  CAS  PubMed  Google Scholar 

  16. Nishimura RA, Grantham JA, Connolly HM et al (2002) Low-output, low-gradient aortic stenosis in patients with depressed left ventricular systolic function: the clinical utility of the dobutamine challenge in the catheterization laboratory. Circulation 106:809–813

    Article  PubMed  Google Scholar 

  17. Monin JL, Monchi M, Gest V et al (2001) Aortic stenosis with severe left ventricular dysfunction and low transvalvular pressure gradients: risk stratification by low-dose dobutamine echocardiography. J Am Coll Cardiol 37:2101–2107

    Article  CAS  PubMed  Google Scholar 

  18. Monin JL, Quere JP, Monchi M et al (2003) Low-gradient aortic stenosis: operative risk stratification and predictors for long-term outcome: a multicenter study using dobutamine stress hemodynamics. Circulation 108:319–324

    Article  PubMed  Google Scholar 

  19. Zuppiroli A, Mori F, Olivotto I et al (2003) Therapeutic implications of contractile reserve elicited by dobutamine echocardiography in symptomatic, low-gradient aortic stenosis. Ital Heart J 4:264–270

    PubMed  Google Scholar 

  20. Quere JP, Monin JL, Levy F et al (2006) Influence of preoperative left ventricular contractile reserve on postoperative ejection fraction in low-gradient aortic stenosis. Circulation 113:1738–1744

    Article  PubMed  Google Scholar 

  21. Picano E, Mathias W Jr, Pingitore A et al (1994) Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicentre study. Echo Dobutamine International Cooperative Study Group. Lancet 344:1190–1192

    Article  CAS  PubMed  Google Scholar 

  22. Bountioukos M, Kertai MD, Schinkel AF et al (2003) Safety of dobutamine stress echocardiography in patients with aortic stenosis. J Heart Valve Dis 12:441–446

    PubMed  Google Scholar 

  23. Blais C, Burwash IG, Mundigler G et al (2006) Projected valve area at normal flow rate improves the assessment of stenosis severity in patients with low-flow, low-gradient aortic stenosis: the multicenter TOPAS (Truly or Pseudo-Severe Aortic Stenosis) study. Circulation 113:711–721

    Article  PubMed  Google Scholar 

  24. Bergler-Klein J, Mundigler G, Pibarot P et al (2007) B-type natriuretic peptide in low-flow, low-gradient aortic stenosis: relationship to hemodynamics and clinical outcome: results from the Multicenter Truly or Pseudo-Severe Aortic Stenosis (TOPAS) study. Circulation 115:2848–2855

    Article  CAS  PubMed  Google Scholar 

  25. Messika-Zeitoun D, Aubry MC, Detaint D et al (2004) Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography. Circulation 110:356–362

    Article  PubMed  Google Scholar 

  26. Pibarot P, Dumesnil JG (2012) Low-flow, low-gradient aortic stenosis with normal and depressed left ventricular ejection fraction. J Am Coll Cardiol 60:1845–1853

    Article  PubMed  Google Scholar 

  27. Lancellotti P, Magne J, Donal E et al (2012) Clinical outcome in asymptomatic severe aortic stenosis: insights from the new proposed aortic stenosis grading classification. J Am Coll Cardiol 59:235–243

    Article  CAS  PubMed  Google Scholar 

  28. Clavel MA, Dumesnil JG, Capoulade R et al (2012) Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J Am Coll Cardiol 60:1259–1267

    Article  PubMed  Google Scholar 

  29. Clavel MA, Ennezat PV, Marechaux S et al (2013) Stress echocardiography to assess stenosis severity and predict outcome in patients with paradoxical low-flow, low-gradient aortic stenosis and preserved LVEF. JACC Cardiovasc Imaging 6:175–183

    Article  PubMed  Google Scholar 

  30. Otto CM, Burwash IG, Legget ME et al (1997) Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. Circulation 95:2262–2270

    Article  CAS  PubMed  Google Scholar 

  31. Amato MC, Moffa PJ, Werner KE et al (2001) Treatment decision in asymptomatic aortic valve stenosis: role of exercise testing. Heart 86:381–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Alborino D, Hoffmann JL, Fournet PC et al (2002) Value of exercise testing to evaluate the indication for surgery in asymptomatic patients with valvular aortic stenosis. J Heart Valve Dis 2002(11):204–209

    Google Scholar 

  33. Das P, Rimington H, Chambers J (2005) Exercise testing to stratify risk in aortic stenosis. Eur Heart J 26:1309–1313

    Article  PubMed  Google Scholar 

  34. Lancellotti P, Lebois F, Simon M et al (2005) Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. Circulation 112:I377–I382

    PubMed  Google Scholar 

  35. Marechaux S, Hachicha Z, Bellouin A et al (2010) Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. Eur Heart J 31:1390–1397

    Article  PubMed Central  PubMed  Google Scholar 

  36. Donal E, Thebault C, O’Connor K et al (2011) Impact of aortic stenosis on longitudinal myocardial deformation during exercise. Eur J Echocardiogr 12:235–241

    Article  PubMed  Google Scholar 

  37. Lancellotti P, Magne J, Donal E et al (2012) Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation 126:851–859

    Article  PubMed  Google Scholar 

  38. Borer JS, Bonow RO (2003) Contemporary approach to aortic and mitral regurgitation. Circulation 108:2432–2438

    Article  PubMed  Google Scholar 

  39. Bonow RO, Picone AL, McIntosh CL et al (1985) Survival and functional results after valve replacement for aortic regurgitation from 1976 to 1983: impact of preoperative left ventricular function. Circulation 72:1244–1256

    Article  CAS  PubMed  Google Scholar 

  40. Bonow RO, Dodd JT, Maron BJ et al (1988) Long-term serial changes in left ventricular function and reversal of ventricular dilatation after valve replacement for chronic aortic regurgitation. Circulation 78:1108–1120

    Article  CAS  PubMed  Google Scholar 

  41. Wahi S, Haluska B, Pasquet A et al (2000) Exercise echocardiography predicts development of left ventricular dysfunction in medically and surgically treated patients with asymptomatic severe aortic regurgitation. Heart 84:606–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Espinola-Zavaleta N, Gomez-Nunez N, Chavez PY et al (2001) Evaluation of the response to pharmacological stress in chronic aortic regurgitation. Echocardiography 18:491–496

    Article  CAS  PubMed  Google Scholar 

  43. Bonow RO, Lakatos E, Maron BJ et al (1991) Serial long-term assessment of the natural history of asymptomatic patients with chronic aortic regurgitation and normal left ventricular systolic function. Circulation 84:1625–1635

    Article  CAS  PubMed  Google Scholar 

  44. Tornos MP, Olona M, Permanyer-Miralda G et al (1995) Clinical outcome of severe asymptomatic chronic aortic regurgitation: a long-term prospective follow-up study. Am Heart J 130:333–339

    Article  CAS  PubMed  Google Scholar 

  45. Borer JS, Hochreiter C, Herrold EM et al (1998) Prediction of indications for valve replacement among asymptomatic or minimally symptomatic patients with chronic aortic regurgitation and normal left ventricular performance. Circulation 97:525–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Tarasoutchi F, Grinberg M, Spina GS et al (2003) Ten-year clinical laboratory follow-up after application of a symptom-based therapeutic strategy to patients with severe chronic aortic regurgitation of predominant rheumatic etiology. J Am Coll Cardiol 41:1316–1324

    Article  PubMed  Google Scholar 

  47. Lancellotti P, Magne J (2013) Stress echocardiography in regurgitant valve disease. Circ Cardiovasc Imaging 6:840–849

    Article  PubMed  Google Scholar 

  48. Hecker SL, Zabalgoitia M, Ashline P et al (1997) Comparison of exercise and dobutamine stress echocardiography in assessing mitral stenosis. Am J Cardiol 80:1374–1377

    Article  CAS  PubMed  Google Scholar 

  49. Schwammenthal E, Vered Z, Agranat O et al (2000) Impact of atrioventricular compliance on pulmonary artery pressure in mitral stenosis: an exercise echocardiographic study. Circulation 102:2378–2384

    Article  CAS  PubMed  Google Scholar 

  50. Reis G, Motta MS, Barbosa MM et al (2004) Dobutamine stress echocardiography for noninvasive assessment and risk stratification of patients with rheumatic mitral stenosis. J Am Coll Cardiol 43:393–401

    Article  PubMed  Google Scholar 

  51. Li M, Dumesnil JG, Mathieu P et al (2005) Impact of valve prosthesis-patient mismatch on pulmonary arterial pressure after mitral valve replacement. J Am Coll Cardiol 45:1034–1040

    Article  PubMed  Google Scholar 

  52. Brochet E, Detaint D, Fondard O et al (2011) Early hemodynamic changes versus peak values: what is more useful to predict occurrence of dyspnea during stress echocardiography in patients with asymptomatic mitral stenosis? J Am Soc Echocardiogr 24:392–398

    Article  PubMed  Google Scholar 

  53. Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

  54. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D et al (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352:875–883

    Article  CAS  PubMed  Google Scholar 

  55. Rosenhek R, Rader F, Klaar U et al (2006) Outcome of watchful waiting in asymptomatic severe mitral regurgitation. Circulation 113:2238–2244

    Article  PubMed  Google Scholar 

  56. Madaric J, Watripont P, Bartunek J et al (2007) Effect of mitral valve repair on exercise tolerance in asymptomatic patients with organic mitral regurgitation. Am Heart J 154:180–185

    Article  PubMed  Google Scholar 

  57. Magne J, Lancellotti P, Pierard LA (2010) Exercise-induced changes in degenerative mitral regurgitation. J Am Coll Cardiol 56:300–309

    Article  PubMed  Google Scholar 

  58. Magne J, Lancellotti P, Pierard LA (2010) Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation 122:33–41

    Article  PubMed  Google Scholar 

  59. Magne J, Mahjoub H, Dulgheru R et al (2014) Left ventricular contractile reserve in asymptomatic primary mitral regurgitation. Eur Heart J 35:1608–1616

    Article  CAS  PubMed  Google Scholar 

  60. Naji P, Griffin BP, Asfahan F et al (2014) Predictors of long-term outcomes in patients with significant myxomatous mitral regurgitation undergoing exercise echocardiography. Circulation 129:1310–1319

    Article  PubMed  Google Scholar 

  61. Tischler MD, Battle RW, Saha M et al (1995) Observations suggesting a high incidence of exercise-induced severe mitral regurgitation in patients with mild rheumatic mitral valve disease at rest. J Am Coll Cardiol 25:128–133

    Article  CAS  PubMed  Google Scholar 

  62. Pierard LA, Lancellotti P (2004) The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N Engl J Med 351:1627–1634

    Article  CAS  PubMed  Google Scholar 

  63. Lancellotti P, Gerard PL, Pierard LA (2005) Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J 26:1528–1532

    Article  PubMed  Google Scholar 

  64. Pierard LA, Lancellotti P (2006) Dyspnea and stress testing. N Engl J Med 354:871–873

    Article  CAS  PubMed  Google Scholar 

  65. Pierard LA, Lancellotti P (2007) Stress testing in valve disease. Heart 83:766–772

    Article  Google Scholar 

  66. Gottdiener JS, Bednarz J, Devereux R et al (2004) American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr 17:1086–1119

    PubMed  Google Scholar 

  67. Pibarot P, Dumesnil JG (2007) Prevention of valve prosthesis–patient mismatch before aortic valve replacement: does it matter and is it feasible? Heart 93:549–551

    Article  PubMed Central  PubMed  Google Scholar 

  68. Blais C, Dumesnil JG, Baillot R et al (2003) Impact of valve prosthesis-patient mismatch on short-term mortality after aortic valve replacement. Circulation 108:983–988

    Article  PubMed  Google Scholar 

  69. Ruel M, Rubens FD, Masters RG et al (2004) Late incidence and predictors of persistent or recurrent heart failure in patients with aortic prosthetic valves. J Thorac Cardiovasc Surg 127:149–159

    Article  PubMed  Google Scholar 

  70. Mohty D, Malouf JF, Girard SE et al (2006) Impact of prosthesis-patient mismatch on long-term survival in patients with small St Jude Medical mechanical prostheses in the aortic position. Circulation 113:420–426

    Article  PubMed  Google Scholar 

  71. Bleiziffer S, Eichinger WB, Hettich I et al (2008) Impact of patient-prosthesis mismatch on exercise capacity in patients after bioprosthetic aortic valve replacement. Heart 94:637–641

    Article  CAS  PubMed  Google Scholar 

  72. Magne J, Mathieu P, Dumesnil JG et al (2007) Impact of prosthesis-patient mismatch on survival after mitral valve replacement. Circulation 115:1417–1425

    Article  PubMed  Google Scholar 

  73. Wu WC, Ireland LA, Sadaniantz A (2004) Evaluation of aortic valve disorders using stress echocardiography. Echocardiography 21:459–466

    Article  CAS  PubMed  Google Scholar 

  74. Pibarot P, Dumesnil JG, Jobin J et al (1999) Hemodynamic and physical performance during maximal exercise in patients with an aortic bioprosthetic valve: comparison of stentless versus stented bioprostheses. J Am Coll Cardiol 34:1609–1617

    Article  CAS  PubMed  Google Scholar 

  75. Pibarot P, Dumesnil JG, Jobin J et al (1999) Usefulness of the indexed effective orifice area at rest in predicting an increase in gradient during maximum exercise in patients with a bioprosthesis in the aortic valve position. Am J Cardiol 83:542–546

    Article  CAS  PubMed  Google Scholar 

  76. Pibarot P, Dumesnil JG (2000) Hemodynamic and clinical impact of prosthesis-patient mismatch in the aortic valve position and its prevention. J Am Coll Cardiol 36:1131–1141

    Article  CAS  PubMed  Google Scholar 

  77. De Carlo M, Milano A, Musumeci G et al (1999) Cardiopulmonary exercise testing in patients with 21mm St. Jude Medical aortic prosthesis. J Heart Valve Dis 8:522–528; discussion 528–529

    PubMed  Google Scholar 

  78. Tatineni S, Barner HB, Pearson AC et al (1989) Rest and exercise evaluation of St. Jude Medical and Medtronic Hall prostheses. Influence of primary lesion, valvular type, valvular size, and left ventricular function. Circulation 80:I16–I23

    CAS  PubMed  Google Scholar 

  79. van den Brink RB, Verheul HA, Visser CA et al (1992) Value of exercise Doppler echocardiography in patients with prosthetic or bioprosthetic cardiac valves. Am J Cardiol 69:367–372

    Article  PubMed  Google Scholar 

  80. Dressler FA, Labovitz AJ (1992) Exercise evaluation of prosthetic heart valves by Doppler echocardiography: comparison with catheterization studies. Echocardiography 9:235–241

    Article  CAS  PubMed  Google Scholar 

  81. Wiseth R, Levang OW, Tangen G et al (1993) Exercise hemodynamics in small (< or = 21 mm) aortic valve prostheses assessed by Doppler echocardiography. Am Heart J 125:138–146

    Article  CAS  PubMed  Google Scholar 

  82. Shigenobu M, Sano S (1995) Evaluation of St. Jude Medical mitral valve function by exercise Doppler echocardiography. J Card Surg 10:161–168

    Article  CAS  PubMed  Google Scholar 

  83. Becassis P, Hayot M, Frapier JM et al (2000) Postoperative exercise tolerance after aortic valve replacement by small-size prosthesis: functional consequence of small-size aortic prosthesis. J Am Coll Cardiol 36:871–877

    Article  CAS  PubMed  Google Scholar 

  84. Minardi G, Manzara C, Creazzo V et al (2006) Evaluation of 17-mm St. Jude Medical Regent prosthetic aortic heart valves by rest and dobutamine stress echocardiography. J Cardiothorac Surg 1:27–33

    Article  PubMed Central  PubMed  Google Scholar 

  85. Hobson NA, Wilkinson GA, Cooper GJ et al (2006) Hemodynamic assessment of mitral mechanical prostheses under high flow conditions: comparison between dynamic exercise and dobutamine stress. J Heart Valve Dis 2006(15):87–91

    Google Scholar 

  86. Magne J, Senechal M, Mathieu P et al (2008) Restrictive annuloplasty for ischemic mitral regurgitation may induce functional mitral stenosis. J Am Coll Cardiol 51:1692–1701

    Article  PubMed  Google Scholar 

  87. Patsilinakos SP, Kranidis AI, Antonelis IP et al (1999) Detection of coronary artery disease in patients with severe aortic stenosis with noninvasive methods. Angiology 50:309–317

    Article  CAS  PubMed  Google Scholar 

  88. Picano E, Palinkas A, Amyot R (2001) Diagnosis of myocardial ischemia in hypertensive patients. J Hypertens 19:1177–1183

    Article  CAS  PubMed  Google Scholar 

  89. Marcus ML, Doty DB, Hiratzka LF et al (1982) Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med 307:1362–1366

    Article  CAS  PubMed  Google Scholar 

  90. Rajappan K, Rimoldi OE, Dutka DP et al (2002) Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation 105:470–476

    Article  PubMed  Google Scholar 

  91. Rajappan K, Rimoldi OE, Camici PG et al (2003) Functional changes in coronary microcirculation after valve replacement in patients with aortic stenosis. Circulation 107:3170–3175

    Article  PubMed  Google Scholar 

  92. Aminian A, Dolatabadi D, Lefebvre P et al (2014) Importance of guiding catheter disengagement during measurement of fractional flow reserve in patients with an isolated proximal left anterior descending artery stenosis. Catheter Cardiovasc Interv 85:595–601

    Article  PubMed  Google Scholar 

  93. Bakhtiary F, Schiemann M, Dzemali O et al (2007) Impact of patient-prosthesis mismatch and aortic valve design on coronary flow reserve after aortic valve replacement. J Am Coll Cardiol 49:790–796

    Article  PubMed  Google Scholar 

  94. Meimoun P, Germain AL, Elmkies F et al (2012) Factors associated with noninvasive coronary flow reserve in severe aortic stenosis. J Am Soc Echocardiogr 25:835–841

    Article  PubMed  Google Scholar 

  95. Banovic M, Bosiljka VT, Voin B et al (2014) Prognostic value of coronary flow reserve in asymptomatic moderate or severe aortic stenosis with preserved ejection fraction and nonobstructed coronary arteries. Echocardiography 31:428–433

    Article  PubMed  Google Scholar 

  96. Camuglia AC, Syed J, Garg P et al (2014) Invasively assessed coronary flow dynamics improve following relief of aortic stenosis with transcatheter aortic valve implantation. J Am Coll Cardiol 63:1808–1809

    Article  PubMed  Google Scholar 

  97. Nagel E, Klein C, Paetsch I et al (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  98. Lee DC, Simonetti OP, Harris KR et al (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110:58–65

    Article  PubMed  Google Scholar 

  99. Steadman CD, Jerosch-Herold M, Grundy B et al (2012) Determinants and functional significance of myocardial perfusion reserve in severe aortic stenosis. JACC Cardiovasc Imaging 5:182–189

    Article  PubMed  Google Scholar 

  100. Rigo F, Richieri M, Pasanisi E et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol 91:269–273

    Article  PubMed  Google Scholar 

  101. Hildick-Smith DJ, Shapiro LM (2000) Coronary flow reserve improves after aortic valve replacement for aortic stenosis: an adenosine transthoracic echocardiography study. J Am Coll Cardiol 36:1889–1896

    Article  CAS  PubMed  Google Scholar 

  102. Rigo F (2005) Coronary flow reserve in stress-echo lab. From pathophysiologic toy to diagnostic tool. Cardiovasc Ultrasound 3:8

    Article  PubMed Central  PubMed  Google Scholar 

  103. Bhattacharyya S, Kamperidis V, Shah BN et al (2013) Clinical utility and prognostic value of appropriateness criteria in stress echocardiography for the evaluation of valvular heart disease. JACC Cardiovasc Imaging 6:987–992

    Article  PubMed  Google Scholar 

  104. Garbi M, Chambers J, Vannan MA et al (2015) Valve stress echocardiography: A practical guide for referral, procedure, reporting and clinical implementation of results from the HAVEC group. JACC cardiov img 8:724–736

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Table of Contents Video Companion

Table of Contents Video Companion

  • See illustrative cases number 32, 33, 34, and 35 (aortic stenosis with low-flow, low-gradient, and reduced ejection fraction) by Maria Joao Andrade, MD, Carnaxide, Lisbon, Portugal

  • See also, in the section Nuovo Cinema Paradiso remastered, the short movie: The Rocky Horror Stress echo picture show (with a complicated stress echo case in a patient with aortic stenosis).

  • Springer Extra Materials available at http://extras.springer.com/2015/978-3-319-20957-9

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Lancellotti, P., Pibarot, P., Picano, E. (2015). Stress Echocardiography in Valvular Heart Disease. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics