Skip to main content

Stress Echocardiography in Dilated Cardiomyopathy

  • Chapter
Stress Echocardiography
  • 1400 Accesses

Abstract

Heart failure is a progressive, lethal syndrome characterized by accelerating deterioration [1]. Its estimated prevalence in the USA is around 2.0 %, with an increased prevalence of 6–10 % in patients over 65 years of age [2]. The prognosis of heart failure is uniformly poor if the underlying problem cannot be rectified; half of all patients carrying a diagnosis of heart failure will die within 4 years, and in patients with severe heart failure, more than 50 % will die within 1 year [2]. The actual rate of deterioration is highly variable and depends on the nature and causes of the overload, the age of the patient, and many other factors (Fig. 33.1). Following a period of asymptomatic left ventricular dysfunction that can last more than a decade, survival after the onset of significant symptoms averages about 5 years [3]. Stress echocardiography has a role in initial and advanced stages (Fig. 33.2). In formulating the 2001 document, also endorsed in the 2005 document, the ACC/AHA guidelines developed a new approach to the classification of heart failure, identifying four stages: stage A (at high risk but without structural heart disease, e.g., hypertension), stage B (structural heart disease but without signs and symptoms of heart failure, e.g., previous myocardial infarction or asymptomatic valvular heart disease), stage C (structural heart disease with current or prior symptoms of heart failure), and stage D (refractory heart failure requiring specialized interventions). According to this staging approach, which is conceptually similar to that achieved by staging in other diseases such as cancer, patients would be expected either not to advance at all or to advance from one stage to the next, unless progression of the disease was slowed or stopped by treatment. The recent realization that therapies aimed at symptomatic heart failure may improve outcomes in patients with asymptomatic left ventricular dysfunction has increased the importance of recognizing and treating patients with the asymptomatic stage A and B condition, possibly even more frequent than overt heart failure. In the early stage, in patients with normal left ventricular function, a reduced inotropic reserve can unmask initial damage. In advanced stages, stress echocardiography complements resting echocardiography, identifying a heterogeneous prognostic profile that underlies a similar resting echocardiographic pattern (Table 33.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swedberg K, Cleland J, Dargie H et al; Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): the Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology. Eur Heart J 26:1115–1140

    Google Scholar 

  2. Hunt SA, Abraham WT, Chin MH et al; American College of Cardiology; American Heart Association Task Force on Practice Guidelines; American College of Chest Physicians; International Society for Heart and Lung Transplantation; Heart Rhythm Society (2005) ACC/ AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112:e154–e235

    Google Scholar 

  3. Katz AM (2001) Heart failure. Pathophysiology, molecular biology and clinical management. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  4. Henein MY, Cailes J, O’Sullivan C et al (1995) Abnormal ventricular long-axis function in systemic sclerosis. Chest 108:1533–1540

    Article  CAS  PubMed  Google Scholar 

  5. Fang ZY, Najos-Valencia O, Leano R et al (2003) Patients with early diabetic heart disease demonstrate a normal myocardial response to dobutamine. J Am Coll Cardiol 42:446–453

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T, Tamano K, Takahashi M et al (2003) Myocardial systolic function of the left ventricle along the long axis in patients with essential hypertension: a study by pulsed tissue Doppler imaging. J Cardiol 41:175–182

    PubMed  Google Scholar 

  7. Klewer SE, Goldberg SJ, Donnerstein RL et al (1992) Dobutamine stress echocardiography: a sensitive indicator of diminished myocardial function in asymptomatic doxorubicin-treated long-term survivors of childhood cancer. J Am Coll Cardiol 19:394–401

    Article  CAS  PubMed  Google Scholar 

  8. Mariotti E, Agostini A, Angelucci E et al (1996) Reduced left ventricular contractile reserve identified by low dose dobutamine echocardiography as an early marker of cardiac involvement in asymptomatic patients with thalassemia major. Echocardiography 13:463–472

    Article  PubMed  Google Scholar 

  9. Ha JW, Lee HC, Kang ES et al (2007) Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography. Heart 93:1571–1576

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kawano S, Ilda K, Fujeda K et al (1995) Response to isoproterenol as a prognostic indicator of evolution from hypertrophic cardiomyopathy to a phase resembling dilated cardiomyopathy. J Am Coll Cardiol 25:687–692

    Article  CAS  PubMed  Google Scholar 

  11. Picano E (2003) Diabetic cardiomyopathy. The importance of being earliest. J Am Coll Cardiol 42:454–457

    Article  PubMed  Google Scholar 

  12. Neglia D, Parodi O, Gallopin M et al (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 92:796–804

    Article  CAS  PubMed  Google Scholar 

  13. Montisci R, Vacca A, Garau P et al (2003) Detection of early impairment of coronary flow reserve in patients with systemic sclerosis. Ann Rheum Dis 62:890–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Galderisi M, Capaldo B, Sidiropulos M et al (2007) Determinants of reduction of coronary flow reserve in patients with type 2 diabetes mellitus or arterial hypertension without angiographically determined epicardial coronary stenosis. Am J Hypertens 20:1283–1290

    Article  PubMed  Google Scholar 

  15. Bartel T, Yang Y, Müller S et al (2002) Noninvasive assessment of microvascular function in arterial hypertension by transthoracic Doppler harmonic echocardiography. J Am Coll Cardiol 39:2012–2018

    Article  PubMed  Google Scholar 

  16. Agricola E, Oppizzi M, Pisani M et al (2004) Stress echocardiography in heart failure. Cardiovasc Ultrasound 2:11

    Article  PubMed Central  PubMed  Google Scholar 

  17. Neskovic AN, Otasevic P (2005) Stress-echocardiography in idiopathic dilated cardiomyopathy: instructions for use. Cardiovasc Ultrasound 3:3

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nagaoka H, Isobe N, Kubota S et al (1997) Myocardial contractile reserve as prognostic determinant in patients with idiopathic dilated cardiomyopathy without overt heart failure. Chest 111:344–350

    Article  CAS  PubMed  Google Scholar 

  19. Paelinck B, Vermeersch P, Stockman D et al (1999) Usefulness of low-dose dobutamine stress echocardiography in predicting recovery of poor left ventricular function in atrial fibrillation dilated cardiomyopathy. Am J Cardiol 83:1668–1671

    Article  CAS  PubMed  Google Scholar 

  20. Naqvi TZ, Goel RK, Forrester JS et al (1999) Myocardial contractile reserve on dobutamine echocardiography predicts late spontaneous improvement in cardiac function in patients with recent onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol 34:1537–1544

    Article  CAS  PubMed  Google Scholar 

  21. Kitaoka H, Takata J, Yabe T et al (1999) Dobutamine stress echocardiography can predict the improvement of left ventricular systolic function in dilated cardiomyopathy. Heart 81:523–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Scrutinio D, Napoli V, Passantino A et al (2000) Low-dose dobutamine responsiveness in idiopathic dilated cardiomyopathy: relation to exercise capacity and clinical outcome. Eur Heart J 21:927–934

    Article  CAS  PubMed  Google Scholar 

  23. Paraskevaidis IA, Adamopoulos S, Kremastinos DT (2001) Dobutamine echocardiographic study in patients with nonischemic dilated cardiomyopathy and prognostically borderline values of peak exercise oxygen consumption: 18-month follow-up study. J Am Coll Cardiol 37:1685–1691

    Article  CAS  PubMed  Google Scholar 

  24. Pratali L, Picano E, Otasevic P et al (2001) Prognostic significance of dobutamine echocardiography test in idiopathic dilated cardiomyopathy. Am J Cardiol 88:1374–1378

    Article  CAS  PubMed  Google Scholar 

  25. Pinamonti B, Perkan A, Di Lenarda A et al (2002) Dobutamine echocardiography in idiopathic dilated cardiomyopathy: clinical and prognostic implications. Eur J Heart Fail 4:49–61

    Article  PubMed  Google Scholar 

  26. Drozdz J, Krzeminska-Pakula M, Plewka M et al (2002) Prognostic value of low-dose dobutamine echocardiography in patients with idiopathic dilated cardiomyopathy. Chest 121:1216–1222

    Article  PubMed  Google Scholar 

  27. Otasevic P, Popovic ZB, Vasiljevic JD et al (2006) Head-to-head comparison of indices of left ventricular contractile reserve assessed by high-dose dobutamine stress echocardiography in idiopathic dilated cardiomyopathy: five-year follow up. Heart 92:1253–1258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Williams MJ, Odabashian J, Lauer MS et al (1996) Prognostic value of dobutamine echocardiography in patients with left ventricular dysfunction. J Am Coll Cardiol 27:132–139

    Article  CAS  PubMed  Google Scholar 

  29. Marron A, Schneeweiss A (1997) Prognostic value of noninvasively obtained left ventricular contractile reserve in patients with severe heart failure. J Am Coll Cardiol 29:422–428

    Article  Google Scholar 

  30. Pratali L, Otasevic P, Rigo F et al (2005) The additive prognostic value of restrictive pattern and dipyridamole-induced contractile reserve in idiopathic dilated cardiomyopathy. Eur J Heart Fail 7:844–851

    Article  CAS  PubMed  Google Scholar 

  31. Pratali L, Otasevic P, Neskovic A et al (2007) DIP Prognostic value of pharmacologic stress echocardiography in patients with idiopathic dilated cardiomyopathy: a prospective, head-to head comparison between dipyridamole and dobutamine test. J Card Fail 13:836–842

    Article  PubMed  Google Scholar 

  32. Rigo F, Gherardi S, Galderisi M et al (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27:1319–1323

    Article  PubMed  Google Scholar 

  33. Lima MF, Mathias W Jr, Sbano JC et al (2013) Prognostic value of coronary and microvascular flow reserve in patients with non-cardiac dilated cardiomyopathy. J Am Soc Echocardiogr 26:278–287

    Article  PubMed  Google Scholar 

  34. Bedetti G, Gargani L, Sicari R et al (2010) Comparison of prognostic value of echographic risk score with the TIMI and GRACE risk scores. Am J Cardiol 106:1709–1711

    Article  PubMed  Google Scholar 

  35. Carluccio E, Dini FL, Bragnoli P et al (2013) The echo heart failure score: an echocardiographic risk prediction score of mortality in systolic heart failure. Eur J Heart Fail 15:868–876

    Article  PubMed  Google Scholar 

  36. Pinamonti B, Zecchin M, Di Lenarda A et al (1997) Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy: an ominous prognostic sign. J Am Coll Cardiol 29:604–612

    Article  CAS  PubMed  Google Scholar 

  37. Guazzi M, Bandera F, Pelissero G et al (2013) Tricuspid annular plane systolic excursion and pulmonary artery systolic pressure relationship in heart failure: an index of right ventricular function and prognosis. Am J Physiol 305:H1373–H1381

    CAS  Google Scholar 

  38. Rossi A, Fl D, Faggiano P et al (2011) Independent prognostic value of functional mitral regurgitation in patients with heart failure. Heart 97:1675–1680

    Article  PubMed  Google Scholar 

  39. Frassi F, Gargani L, Tesorio P et al (2007) Prognostic value of extravascular lung water assessed with ultrasound lung comets by chest sonography in patients with dyspnea and/or chest pain. J Card Fail 13:830–835

    Article  PubMed  Google Scholar 

  40. Peteiro J, Bendayan I, Marinas J et al (2008) Prognostic value of mitral regurgitation assessment during exercise echocardiography in patients with left ventricular dysfunction. Eur J Echocardiogr 9:18–25

    PubMed  Google Scholar 

  41. Bombardini T, Costantino MF, Sicari R et al (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echo. Biomed Res Int 2013:235194

    Article  PubMed Central  PubMed  Google Scholar 

  42. Rubis P, Drabik L, Kopec G et al (2011) The prognostic role of exercise echo in heart failure. Kardiol Pol 69:656–663

    PubMed  Google Scholar 

  43. Sharp SM, Sawada SG, Segar DS et al (1994) Dobutamine stress echocardiography: detection of coronary artery disease in patients with dilated cardiomyopathy. J Am Coll Cardiol 24:934–939

    Article  CAS  PubMed  Google Scholar 

  44. Vigna C, Russo A, De Rito V et al (1996) Regional wall motion analysis by dobutamine stress echocardiography to distinguish between ischemic and non-ischemic dilated cardiomyopathy. Am Heart J 131:537–543

    Article  CAS  PubMed  Google Scholar 

  45. Cohen A, Chauvel C, Benhalima B et al (1997) Is dobutamine stress echocardiography useful for noninvasive differentiation of ischemic from idiopathic dilated cardiomyopathy? Angiology 48:783–793

    Article  CAS  PubMed  Google Scholar 

  46. Ciampi Q, Villari B (2007) Role of echocardiography in diagnosis and risk stratification in heart failure with left ventricular systolic dysfunction. Cardiovasc Ultrasound 5:34

    Article  PubMed Central  PubMed  Google Scholar 

  47. Galderisi M, Cattaneo F, Mondillo S (2007) Doppler echocardiography and myocardial dyssynchrony: a practical update of old and new ultrasound technologies. Cardiovasc Ultrasound 5:28

    Article  PubMed Central  PubMed  Google Scholar 

  48. Gorcsan J 3rd, Abraham T, Agler DA et al; American Society of Echocardiography Dyssynchrony Writing Group (2008) Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting–a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr 21:191–213

    Google Scholar 

  49. Chung ES, Leon AR, Tavazzi L et al (2008) Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117:2608–2616

    Article  PubMed  Google Scholar 

  50. Marwick TH (2014) Selection for cardiac resynchronization therapy: all in a flash? JACC Cardiovasc Imaging 10:980–982

    Article  Google Scholar 

  51. Da Costa A, Thévenin J, Roche F et al (2006) Prospective validation of stress echocardiography as an identifier of cardiac resynchronization therapy responders. Heart Rhythm 3:406–413

    Article  PubMed  Google Scholar 

  52. Ciampi Q, Pratali L, Citro R et al (2009) Identification of responders to cardiac resynchronization therapy by contractile reserve during stress echocardiography. Eur J Heart Fail 11:489–496

    Article  PubMed  Google Scholar 

  53. Sénéchal M, Lancellotti P, Garceau P et al (2010) Usefulness and limitation of dobutamine stress echocardiography to predict acute response to cardiac resynchronization therapy. Echocardiography 27:50–57

    Article  PubMed  Google Scholar 

  54. Chaudhry FA, Shah A, Bangalore S et al (2011) Inotropic contractile reserve and response to cardiac resynchronization therapy in patients with markedly remodeled left ventricle. J Am Soc Echocardiogr 24:91–97

    Article  PubMed  Google Scholar 

  55. Altman RK, McCarty D, Chen-Tournoux AA et al (2011) Usefulness of low-dose dobutamine echocardiography to predict response and outcome in patients undergoing cardiac resynchronization therapy. Am J Cardiol 108:252–257

    Article  PubMed  Google Scholar 

  56. Gasparini M, Muto C, Iacopino S et al (2012) Low-dose dobutamine test associated with interventricular dyssynchrony: a useful tool to identify cardiac resynchronization therapy responders: data from the LOw dose DObutamine stress-echo test in Cardiac Resynchronization Therapy (LODO-CRT) phase 2 study. Am Heart J 163:422–429

    Article  PubMed  Google Scholar 

  57. Mizia-Stec K, Wita K, Mizia M et al (2014) Preserved contractile reserve in a dobutamine test for the prediction of a response to resynchronisation therapy in ischaemic and non-ischaemic cardiomyopathy–a multicenter ViaCRT study. Int J Cardiol 172:476–477

    Article  PubMed  Google Scholar 

  58. Murin P, Mitro P, Valocik G, Spuny P (2015) Global myocardial contractile reserve assessed by high-dose bobutamine stress echo predicts response to the cardiac resynchronization therapy. Echocardiography 32:490–495

    Article  PubMed  Google Scholar 

  59. Jourdain P, Funck F, Fulla Y et al (2002) Myocardial contractile reserve under low doses of dobutamine and improvement of left ventricular ejection fraction with treatment by carvedilol. Eur J Heart Fail 4:269–276

    Article  CAS  PubMed  Google Scholar 

  60. Eichhorn EJ, Grayburn PA, Mayer SA et al (2003) Myocardial contractile reserve by dobutamine stress echocardiography predicts improvement in ejection fraction with beta-blockade in patients with heart failure: the Beta-Blocker Evaluation of Survival Trial (BEST). Circulation 108:2336–2341

    Article  CAS  PubMed  Google Scholar 

  61. Bello D, Farah GM, Di Luzio S et al (2003) Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in heart failure patients undergoing beta-blocker therapy. Circulation 108:1945–1953

    Article  CAS  PubMed  Google Scholar 

  62. Cleland JG, Pennell DJ, Ray SG et al (2003) Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet 362:14–21

    Article  CAS  PubMed  Google Scholar 

  63. Seghatol FF, Shah DJ, Di Luzio S et al (2004) Relation between contractile reserve and improvement in left ventricular function with beta blocker therapy in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 93:854–859

    Article  CAS  PubMed  Google Scholar 

  64. Guazzi M, Adams V, Conraads V et al (2012) European Association for Cardiovascular P, Rehabilitation, American Heart A. Eacpr/aha scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 126:2261–2274

    Article  PubMed  Google Scholar 

  65. Mancini D, Lietz K (2010) Selection of cardiac transplantation candidates in 2010. Circulation 122:173–183

    Article  PubMed  Google Scholar 

  66. Arena R, Myers J, Abella J et al (2007) Development of a ventilatory classification system in patients with heart failure. Circulation 115:2410–2417

    Article  PubMed  Google Scholar 

  67. Weber KT, Janicki JS (1985) Cardiopulmonary exercise testing for evaluation of chronic cardiac failure. Am J Cardiol 55:22A–31A

    Article  CAS  PubMed  Google Scholar 

  68. Guazzi M (2012) Treating exercise oscillatory ventilation in heart failure: the detail that may matter. Eur Respir J 40:1075–1077

    Article  PubMed  Google Scholar 

  69. Guazzi M, Boracchi P, Arena R et al (2010) Development of a cardiopulmonary exercise prognostic score for optimizing risk stratification in heart failure: the (p)e(r)i(o)dic (b)reathing during (e)xercise (probe) study. J Card Fail 16:799–805

    Article  PubMed  Google Scholar 

  70. Lim HS, Theodosiou M (2014) Exercise ventilatory parameters for the diagnosis of reactive pulmonary hypertension in patients with heart failure. J Card Fail 20:650–657

    Article  PubMed  Google Scholar 

  71. Levine RA, Schwammenthal E (2005) Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation 112:745–758

    Article  PubMed  Google Scholar 

  72. Pierard LA, Carabello BA (2010) Ischaemic mitral regurgitation: pathophysiology, outcomes and the conundrum of treatment. Eur Heart J 31:2996–3005

    Article  PubMed  Google Scholar 

  73. Lancellotti P, Zamorano JL, Vannan MA (2014) Imaging challenges in secondary mitral regurgitation: unsolved issues and perspectives. Circ Cardiovasc Imaging 7:735–746

    Article  PubMed  Google Scholar 

  74. Lancellotti P, Lebrun F, Pierard LA (2003) Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 42:1921–1928

    Article  PubMed  Google Scholar 

  75. Giga V, Ostojic M, Vujisic-Tesic B et al (2005) Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape. Eur Heart J 26:1860–1865

    Article  PubMed  Google Scholar 

  76. Yamano T, Nakatani S, Kanzaki H et al (2008) Exercise-induced changes of functional mitral regurgitation in asymptomatic or mildly symptomatic patients with idiopathic dilated cardiomyopathy. Am J Cardiol 102:481–485

    Article  PubMed  Google Scholar 

  77. Izumo M, Lancellotti P, Suzuki K et al (2009) Three-dimensional echocardiographic assessments of exercise-induced changes in left ventricular shape and dyssynchrony in patients with dynamic functional mitral regurgitation. Eur J Echocardiogr 10:961–967

    Article  PubMed  Google Scholar 

  78. Ypenburg C, Lancellotti P, Tops LF et al (2007) Acute effects of initiation and withdrawal of cardiac resynchronization therapy on papillary muscle dyssynchrony and mitral regurgitation. J Am Coll Cardiol 50:2071–2077

    Article  PubMed  Google Scholar 

  79. Izumo M, Suzuki K, Moonen M et al (2011) Changes in mitral regurgitation and left ventricular geometry during exercise affect exercise capacity in patients with systolic heart failure. Eur J Echocardiogr 12:54–60

    Article  PubMed  Google Scholar 

  80. Madaric J, Vanderheyden M, Van Laethem C et al (2007) Early and late effects of cardiac resynchronization therapy on exercise-induced mitral regurgitation: relationship with left ventricular dyssynchrony, remodelling and cardiopulmonary performance. Eur Heart J 28:2134–2141

    Article  PubMed  Google Scholar 

  81. D’Andrea A, Caso P, Cuomo S et al (2007) Effect of dynamic myocardial dyssynchrony on mitral regurgitation during supine bicycle exercise stress echocardiography in patients with idiopathic dilated cardiomyopathy and ‘narrow’ QRS. Eur Heart J 28:1004–1011

    Article  PubMed  Google Scholar 

  82. Generati G BF, Pellegrino M, Donghi V et al (2014) Echocardiographic and cardiopulmonary phenotypes related to the severity of functional mitral regurgitation during maximal exercise testing in heart failure. Eur Heart J 2014; abstract

    Google Scholar 

  83. Kusunose K, Popovic ZB, Motoki H, Marwick TH (2013) Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging 6:167–176

    Article  PubMed  Google Scholar 

  84. Guazzi M, Bandera F, Pelissero G et al (2013) Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol 305:H1373–H1381

    Article  CAS  PubMed  Google Scholar 

  85. Borghi-Silva A, Labate V, Arena R et al (2014) Exercise ventilatory power in heart failure patients: functional phenotypes definition by combining cardiopulmonary exercise testing with stress echocardiography. Int J Cardiol 176:1348–1349

    Article  PubMed  Google Scholar 

  86. Panza J, Holly TA, Asch FM et al (2013) Inducible myocardial ischemia and outcomes in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 61:1860–1870

    Article  PubMed Central  PubMed  Google Scholar 

  87. Joshi NV, Dweck MR (2013) Is ischemia really bad for you? J Am Coll Cardiol 62:2148–2149

    Article  PubMed  Google Scholar 

  88. Picano E, Mathias W Jr, Pingitore A et al; on behalf of the EDIC study group (1994) Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, large-scale, multicenter trial. Lancet 344:1190–1192

    Google Scholar 

  89. Yancy CW, Jessup M, Bozkurt B et al; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–e239

    Google Scholar 

  90. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–869

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Guazzi .

Table of Contents Video Companion

Table of Contents Video Companion

  • See in the section illustrative cases: case numbers 29, 30, and 31 (by Maria Joao Andrade, MD, Carnaxide, Lisbon, Portugal).

  • See also in the section selected presentations: B-lines, in and out the stress echo lab.

  • Springer Extra Materials available at http://extras.springer.com/2015/978-3-319-20957-9

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Guazzi, M., Picano, E. (2015). Stress Echocardiography in Dilated Cardiomyopathy. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics