Skip to main content

Stress Echo in Microvascular Disease

  • Chapter

Abstract

Coronary microcirculation is a fundamental portion of the coronary artery tree, as it contains most of the coronary blood volume and represents the main regulator of the coronary blood flow. Arterioles, capillaries, and venules originating from the major coronary artery branches and extending inside myocardium, with a diameter less than 300 μm, constitute the whole coronary microcirculation. While in the past only epicardial segments of coronary arteries were recognized to be potentially diseased by atherosclerotic process, in the last years growing evidences have suggested that some impairment may also affect the microcirculation. Interestingly, coronary microvascular impairment greatly contributes to pathophysiology of many cardiac diseases and to patient prognosis. As worth of note, different degrees of coronary microvascular impairment can be found both with and without epicardial obstructive atherosclerosis: indeed, recently, coronary microvascular abnormalities have been described in patients with normal coronary angiograms. Several conditions can be clustered together in the syndrome of microvascular disease (Table 30.1) [1]. In some of these conditions, the abnormalities of the microvasculature represent important markers of risk and may even determine myocardial ischemia, thus becoming important therapeutic targets [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    Article  CAS  PubMed  Google Scholar 

  2. Camici PG (2007) Is the chest pain in cardiac syndrome X due to subendocardial ischaemia? Eur Heart J 28:1539–1540

    Article  PubMed  Google Scholar 

  3. Kemp HG, Kronmal RA, Vlietstra RE et al (1986) Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol 7:479–483

    Article  CAS  PubMed  Google Scholar 

  4. Opherk D, Schuler G, Wetterauer K et al (1989) Four-year follow-up study in patients with angina pectoris and normal coronary arteriograms (“syndrome X”). Circulation 80:1610–1666

    Article  CAS  PubMed  Google Scholar 

  5. Arbogast R, Bourassa MG (1973) Myocardial function during atrial pacing in patients with angina pectoris and normal coronary arteriograms. Comparison with patients having significant coronary artery disease. Am J Cardiol 32:257–263

    Article  CAS  PubMed  Google Scholar 

  6. Galiuto L, De Caterina AR, Porfidia A et al (2010) Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in Apical Ballooning or Takotsubo Syndrome. Eur Heart J 31:1319–1327

    Article  PubMed  Google Scholar 

  7. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Galiuto L, Lombardo A, Maseri A et al (2003) Temporal evolution and functional outcome of no reflow: sustained and spontaneously reversible patterns following successful coronary recanalisation. Heart 89:731–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Miller DD, Verani MS (1994) Current status of myocardial perfusion imaging after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 24:260–266

    Article  CAS  PubMed  Google Scholar 

  10. Uren NG, Crake T, Lefroy DC et al (1994) Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 33:222–227

    Article  Google Scholar 

  11. Uren NG, Marraccini P, Gistri R et al (1993) Altered coronary vasodilator reserve and metabolism in myocardium subtended by normal arteries in patients with coronary artery disease. J Am Coll Cardiol 22:650–658

    Article  CAS  PubMed  Google Scholar 

  12. Neglia D, Parodi O, Gallopin M et al (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 92:796–804

    Article  CAS  PubMed  Google Scholar 

  13. Camici P, Chiriatti G, Lorenzoni R et al (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17:879–886

    Article  CAS  PubMed  Google Scholar 

  14. Scheler S, Motz W, Strauer BE (1994) Mechanism of angina pectoris in patients with systemic hypertension and normal epicardial coronary arteries by arteriogram. Am J Cardiol 73:478–482

    Article  CAS  PubMed  Google Scholar 

  15. Picano E, Palinkas A, Amyot R (2001) Diagnosis of myocardial ischemia in hypertensive patients. J Hypertens 19:1177–1183

    Article  CAS  PubMed  Google Scholar 

  16. Kemp HG (1973) Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol 32:375

    Article  PubMed  Google Scholar 

  17. Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953

    Article  PubMed  Google Scholar 

  18. Lanza GA, Buffon A, Sestito A et al (2008) Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J Am Coll Cardiol 51:466–472

    Article  PubMed  Google Scholar 

  19. Buchthal SD, den Hollander JA, Merz CN et al (2000) Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med 342:829–835

    Article  CAS  PubMed  Google Scholar 

  20. Vermeltfoort IA, Bondarenko O, Raijmakers PG et al (2007) Is subendocardial ischaemia present in patients with chest pain and normal coronary angiograms? a cardiovascular MR study. Eur Heart J 28:1554–1558

    Article  PubMed  Google Scholar 

  21. Maseri A, Crea F, Kaski JC et al (1991) Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol 17:499–506

    Article  CAS  PubMed  Google Scholar 

  22. Epstein SE, Cannon RO (1986) Site of increased resistance to coronary flow in patients with angina pectoris and normal coronary arteries. J Am Coll Cardiol 8:459–461

    Article  CAS  PubMed  Google Scholar 

  23. Ross J Jr, Hearse DJ (1994) Myocardial ischemia can we agree on a definition for the 21st century? Cardiovasc Res 28:1737–1744

    Article  Google Scholar 

  24. Galiuto L et al (2011) Chapter 7. Contrast echocardiography. In: The EAE textbook of echocardiography. Oxford University Press, Oxford, pp 99–115

    Chapter  Google Scholar 

  25. Lieberman AN, Weiss JL, Jugdutt BI et al (1981) Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746

    Article  CAS  PubMed  Google Scholar 

  26. Falsetti HL, Marcus ML, Kerber RE et al (1981) Quantification of myocardial ischemia and infarction by left ventricular imaging. Circulation 63:747–751

    Article  CAS  PubMed  Google Scholar 

  27. Armstrong WF (1988) Echocardiography in coronary artery disease. Prog Cardiovasc Dis 30:267–288

    Article  CAS  PubMed  Google Scholar 

  28. Carpeggiani C, L’Abbate A, Marzullo P (1989) Multiparametric approach to diagnosis of non-Q-wave acute myocardial infarction. Am J Cardiol 63:404–408

    Article  CAS  PubMed  Google Scholar 

  29. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653

    Article  PubMed  Google Scholar 

  30. Abraham TP, Pinheiro AC (2008) Speckle-derived strain a better tool for quantification of stress echocardiography? J Am Coll Cardiol 51:158–160

    Article  PubMed  Google Scholar 

  31. Reant P, Labrousse L, Lafitte S et al (2008) Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions. J Am Coll Cardiol 51:149–157

    Article  PubMed  Google Scholar 

  32. Peteiro J, Monserrat L, Castro Beiras A (1999) Labile subaortic obstruction during exercise stress echocardiography. Am J Cardiol 84:1119–1123

    Article  CAS  PubMed  Google Scholar 

  33. Lau K, Navarijo J, Stainback F (2001) Pseudo-false-positive exercise treadmill testing. Tex Heart Inst J 28:308–311

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Cotrim C, Almeida AG, Carrageta M (2007) Clinical significance of intraventricular gradient during effort in an adolescent karate player. Cardiovasc Ultrasound 5:39

    Article  PubMed Central  PubMed  Google Scholar 

  35. Maron B, Zipes D (2005) 36th Bethesda Conference. Introduction: eligibility recommendations for competitive athletes with cardiovascular abnormalities – general considerations. J Am Coll Cardiol 45:1318–1321

    Article  PubMed  Google Scholar 

  36. Corrado D, Pelliccia A, Bjørnstad H, Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology et al (2005) Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Consensus statement of Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and Working Group of Myocardial and Pericardial Diseases of European Society of Cardiology. Eur Heart J 26:516–524

    Article  PubMed  Google Scholar 

  37. Tousoulis D, Crake T, Lefroy DC et al (1993) Left ventricular hypercontractility and ST segment depression in patients with syndrome X. J Am Coll Cardiol 22:1607–1613

    Article  CAS  PubMed  Google Scholar 

  38. Christiaens L, Duplantier C, Alla J et al (2001) Normal coronary angiogram and dobutamine-induced left ventricular obstruction during stress echocardiography: a higher hemodynamic responsiveness to dobutamine. Echocardiography 18:285–290

    Article  CAS  PubMed  Google Scholar 

  39. Madaric J, Bartunek J, Verhamme K et al (2005) Hyperdynamic myocardial response to beta-adrenergic stimulation in patients with chest pain and normal coronary arteries. J Am Coll Cardiol 46:1270–1275

    Article  PubMed  Google Scholar 

  40. Picano E, Lattanzi F, Masini M et al (1987) Usefulness of dipyridamole-echocardiography test for the diagnosis of syndrome X. Am J Cardiol 60:508

    Article  CAS  PubMed  Google Scholar 

  41. Nihoyannopoulos P, Kaski JC, Crake T et al (1991) Absence of myocardial dysfunction during stress in patients with syndrome X. J Am Coll Cardiol 19:1463–1470

    Article  Google Scholar 

  42. Lanzarini L, Previtali M, Fetiveau R et al (1994) Results of dobutamine stress echocardiography in patients with syndrome X. Int J Card Imaging 10:145–148

    Article  CAS  PubMed  Google Scholar 

  43. Panza JA, Laurienzo JM, Curiel RV et al (1997) Investigation of the mechanism of chest pain in patients with angiographically normal coronary arteries using transesophageal dobutamine stress echocardiography. J Am Coll Cardiol 29:293–301

    Article  CAS  PubMed  Google Scholar 

  44. Dimitrow PP, Rigo F (2005) The noninvasive documentation of coronary microcirculatory impairment role of transthoracic echocardiography. Cardiovasc Ultrasound 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  45. Galiuto L, Sestito A, Barchetta S et al (2007) Noninvasive evaluation of flow reserve in the left anterior descending coronary artery in patients with cardiac syndrome X. Am J Cardiol 99:1378–1383

    Article  PubMed  Google Scholar 

  46. Meimoun P, Malaquin D, Sayah S et al (2008) The coronary flow reserve is transiently impaired in takotsubo cardiomyopathy: a prospective study using serial Doppler transthoracic echocardiography. J Am Soc Echocardiogr 21:72–77

    Article  PubMed  Google Scholar 

  47. Rigo F, Sicari R, Citro R et al (2009) Diffuse, marked, reversible impairment in coronary microcirculation in stress cardiomyopathy: a Doppler transthoracic echo study. Ann Med 4:462–470

    Article  Google Scholar 

  48. Meimoun P, Malaquin D, Benali T et al (2009) Transient impairment of coronary flow reserve in takotsubo cardiomyopathy is related to left ventricular systolic parameters. Eur J Echocardiogr 10:265–270

    Article  PubMed  Google Scholar 

  49. Silberbauer J, Hong P, Lloyd GW (2008) Takotsubo cardiomyopathy (left ventricular ballooning syndrome) induced during dobutamine stress echocardiography. Eur J Echocardiogr 9:136–138

    PubMed  Google Scholar 

  50. Margey R, Diamond P, McCann H, Sugrue D (2009) Dobutamine stress echo-induced apical ballooning (Takotsubo) syndrome. Eur J Echocardiogr 10:395–399

    Article  PubMed  Google Scholar 

  51. Litvinov IV, Kotowycz MA, Wassmann S (2009) Iatrogenic epinephrine-induced reverse Takotsubo cardiomyopathy: direct evidence supporting the role of catecholamines in the pathophysiology of the “broken heart syndrome”. Clin Res Cardiol 98:457–462

    Article  PubMed  Google Scholar 

  52. Abraham J, Mudd JO, Kapur N, Klein K, Champion HC, Wittstein IS (2009) Stress cardiomyopathy after intravenous administration of catecholamines and beta-receptor agonists. J Am Coll Cardiol 53:1320–1325

    Article  CAS  PubMed  Google Scholar 

  53. Maseri A (1986) Role of coronary spasm in symptomatic and silent myocardial ischemia. J Am Coll Cardiol 9:249–262

    Article  Google Scholar 

  54. Papanicolaou MN, Califf RM, Hlatky MA et al (1986) Prognostic implications of angiographically normal and insignificantly narrowed coronary arteries. Am J Cardiol 58:1181–1187

    Article  CAS  PubMed  Google Scholar 

  55. Lichtlen PR, Bargheer K, Wenzlaff P (1995) Long-term prognosis of patients with anginalike chest pain and normal coronary angiographic findings. J Am Coll Cardiol 25:1013–1018

    Article  CAS  PubMed  Google Scholar 

  56. Sicari R, Palinkas A, Pasanisi E et al (2005) Long-term survival of patients with chest pain syndrome and angiographically normal or near-normal coronary arteries: the additional prognostic value of dipyridamole-echocardiography test. Eur Heart J 26:2136–2141

    Article  PubMed  Google Scholar 

  57. Sicari R, Rigo F, Cortigiani L et al (2009) Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. Am J Cardiol 103:626–631

    Article  PubMed  Google Scholar 

  58. Bugiardini R, Merz NB (2005) Angina with “normal” coronary arteries – a changing philosophy. JAMA 293:477–484

    Article  CAS  PubMed  Google Scholar 

  59. National Heart, Lung, and Blood Institute, von Mering GO, Arant CB, Wessel TR et al (2004) Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: results from the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109:722–725

    Article  Google Scholar 

  60. Prescott E, Abildstrøm SZ, Aziz A et al (2014) Improving diagnosis and treatment of women with angina pectoris and microvascular disease: the iPOWER study design and rationale. Am Heart J 167:452–458

    Article  PubMed  Google Scholar 

  61. Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leda Galiuto .

Table of Contents Video Companion

Table of Contents Video Companion

  • See stress echo primer, case 7 and case 10

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Galiuto, L., Picano, E. (2015). Stress Echo in Microvascular Disease. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics