Skip to main content

Maintenance Concepts and Models

  • Chapter
  • First Online:
  • 1816 Accesses

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

One of the main objectives of life-cycle analysis is to provide a framework for the design of an optimal maintenance policy; that is, to define a program of interventions that maximizes the profit derived from the existence of the project while assuring its safety and availability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The value of \(s^*\) may be \(k^*\) as described in previous chapters, or any other value of interest for that matter.

  2. 2.

    IFR—Increasing Failure Rate; DFR—Decreasing Failure Rate.

References

  1. K.B. Misra, Handbook of Performability Engineering (Springer, London, 2008)

    Book  Google Scholar 

  2. W.P. Pierskalla, J.A. Voelker, A survey of maintenance models: the control and surveillance of deteriorating systems. Nav. Res. Logist. Q. 23, 353–388 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y.S. Sherif, M.L. Smith, Optimal maintenance models for systems subject to failure -a review. Nay. Res. Log. Quart. 28, 47–74 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Bosch, U. Jensen, Maintenance models: a survey: parts 1 and 2 (in german). OR Spektrum 5(105–118), 129–148 (1983)

    Article  Google Scholar 

  5. C. Valdez-Flores, R.M. Feldman, A survey of preventive maintenance models for stochastically deteriorating single unit systems. Nav. Res. Logist. Q. 36, 419–446 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Cho, M. Parlar, A survey of maintenance models for multilayer systems. Eur. J. Oper. Res. 51, 123 (1991)

    Article  Google Scholar 

  7. R. Dekker, Applications of maintenance optimization models: a review and analysis. Reliab. Eng. Syst. Saf. 51, 229–240 (1996)

    Article  Google Scholar 

  8. D. Sherwin, A review of overall models for maintenance management. J. Qual. Maint. Eng. 6(3), 138–164 (2000)

    Article  Google Scholar 

  9. D.M. Frangopol, D. Saydam, S. Kim, Maintenance, management, life-cycle design and performance of structures and infrastructures: a brief review. Struct. Infrastruct. Eng. 8(1), 1–25 (2012)

    Article  Google Scholar 

  10. I.B. Gerstbakh, Models of Preventive Maintenance (North Holland, New York, 1977)

    Google Scholar 

  11. J.D. Campbell, A.K.S. Jardine, J. McGlynn, Asset Management Excellence: Optimizing Equipment Life-Cycle Decisions (CRC Press, Florida, 2011)

    Google Scholar 

  12. A. Van Horenbeek, P. Pintelon, L. Muchiri, Maintenance optimization models and criteria. White paper (2011), https://lirias.kuleuven.be/bitstream/123456789/270349/1/

  13. M.D. Pandey, Probabilistic models for condition assessment of oil and gas pipelines. Int. J. Non-Destr. Test. Eval. 31(5), 349–358 (1998)

    Google Scholar 

  14. H. Wang, H. Pham, Reliability and Optimal Maintenance (Springer, London, 2006)

    MATH  Google Scholar 

  15. T. Nakagawa, Maintenance Theory of Reliability (Springer, London, 2005)

    Google Scholar 

  16. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis (Chapman & Hall/CRC, New York, 2000)

    MATH  Google Scholar 

  17. N. Fenton, M. Neil, Risk Assessment and Decision Analysis with Bayesian Networks (CRC Press, Boca Raton, 2012)

    MATH  Google Scholar 

  18. N.T. Kottegoda, R. Rosso, Probability, Statistics and Reliability for Civil and Environmental Engineers (McGraw Hill, New York, 1997)

    Google Scholar 

  19. A.H.-S. Ang, W.H. Tang, Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering (Wiley, New York, 2007)

    Google Scholar 

  20. Y. Mori, B. Ellingwood, Maintaining reliability of concrete structures. i: role of inspection/repair. J. Struct. ASCE 120(3), 824–835 (1994)

    Article  Google Scholar 

  21. H. Streicher, A. Joanni, R. Rackwitz, Cost-benefit optimization and risk acceptability for existing, aging but maintained structures. Struct. Saf. 30, 375–393 (2008)

    Article  Google Scholar 

  22. C.H. Lie, C.L. Hwang, F.A. Tillman, Availability of maintained systems: a state-of-the-art survey. AIIE Trans. 9, 247–259 (1977)

    Article  Google Scholar 

  23. E.E. Lewis, Introduction to Reliability Engineering (Wiley, New York, 1994)

    Google Scholar 

  24. S. Ozikichi (ed.), Reliability and Maintenance of Complex Systems (Springer, New York, 1996)

    Google Scholar 

  25. K.W. Lee, Handbook on Reliability Engineering (Springer, London, 2003)

    Google Scholar 

  26. S. Ross, Introduction of Probability Models (Academic Press, San Diego, 2007)

    Google Scholar 

  27. R. Rackwitz, A. Joanni, Risk acceptance and maintenance optimization of aging civil engineering infrastructures. Struct. Saf. 31, 251–259 (2009)

    Article  Google Scholar 

  28. D.R. Cox, Renewal Theory (Metheun, London, 1962)

    MATH  Google Scholar 

  29. R.E. Barlow, F. Proschan, Mathematical Theory of Reliability (Wiley, New York, 1965)

    MATH  Google Scholar 

  30. R. Cleroux, S. Dubuc, C. Tilquin, The age replacement problem with minimal repair and random repair costs. Oper. Res. 27, 1158–1167 (1979)

    Article  MATH  Google Scholar 

  31. T.J. Aven, U. Jensen, Stochastic Models in Reliability, Series in Applications of Mathematics: Stochastic Modeling and Applied Probability (41) (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  32. T. Dohi, N. Kaio, S. Osaki, Basic Preventive Maintenance Policies and Their Variations, in Maintenance Modeling and Optimization, ed. by M. Ben-Daya, S.O. Duffuaa, A. Raouf (Kluwer Academic Press, Boston, 2000), pp. 155–183

    Chapter  Google Scholar 

  33. S.H. Sheu, W.S. Griffith, Optimal age-replacement policy with age dependent minimal-repair and random leadtime. IEEE Trans. Reliab. 50, 302–309 (2001)

    Article  Google Scholar 

  34. W. Kuo, M.J. Zuo, Optimal Reliability Modeling (Wiley, Hoboken, 2003)

    Google Scholar 

  35. M. Berg, A proof of optimality for age replacement policies. J. Appl. Probab. 13, 751–759 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Bergman, On the optimality of stationary replacement strategies. J. Appl. Probab. 17, 178–186 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. C.W. Holland, R.A. McLean, Applications of replacement theory. AIIE Trans. 7, 42–47 (1975)

    Article  Google Scholar 

  38. C. Tilquin, R. Cleroux, Periodic replacement with minimal repair at failure and adjustment costs. Nav. Res. Logis. Q. 22, 243–254 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. P.J. Boland, Periodic replacement when minimal repair costs vary with time. Nav. Res. Logis. Q. 29, 541–546 (1982)

    Article  MATH  Google Scholar 

  40. T. Aven, Optimal replacement under a minimal repair strategy: a general failure model. Adv. Appl. Probab. 15, 198–211 (1983)

    MathSciNet  MATH  Google Scholar 

  41. I. Bagai, K. Jain, Improvement, deterioration and optimal replacement under age-replacement with minimal repair. IEEE Trans. Reliab. 43, 156–162 (1994)

    Article  Google Scholar 

  42. M. Chen, R.M. Feldman, Optimal replacement policies with minimal repair and age dependent costs. Eur. J. Oper. Res. 98, 75–84 (1997)

    Article  MATH  Google Scholar 

  43. R. Korn, Some applications of impulse control in mathematical finance. Math. Methods Oper. Res. 50, 493–518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Junca, Optimal execution strategy in the presence of permanent price impact and fixed transaction cost. Optim. Control Appl. Methods 33(6), 713–738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Bensoussan, R.H. Liu, S.P. Sethi, Optimality of an (s, s) policy with compound poisson and diffusion demands: a quasi-variational inequalities approach. SIAM, J. Control Optim. 44(5), 1650–1676 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Thonhauser, H. Albrecher, Optimal dividend strategies for a compound poisson process under transaction costs and power utility. Stoch. Models 27, 120–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Junca, M. Sánchez-Silva, Optimal maintenance policy for a compound poisson shock model. IEEE - Trans. Reliab. 62(1), 66–72 (2012)

    Article  Google Scholar 

  48. M. Junca, M. Sánchez-Silva, Optimal maintenance policy for permanently monitored infrastructure subjected to extreme events. Probab. Eng. Mech. 33(1), 1–8 (2013)

    Article  Google Scholar 

  49. L.C.G. Rogers, D. Williams, Diffusions, Markov Processes and Martingales, vol. 1 (Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  50. H. Kushner, P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time (Springer, New York, 1992)

    Book  MATH  Google Scholar 

  51. R.E. Barlow, L.C. Hunter, F. Proschan, Optimum checking procedures. SIAM J. 4, 1078–1095 (1963)

    MathSciNet  MATH  Google Scholar 

  52. T. Nakagawa, Optimum inspection policies for a standby unit. J. Oper. Soc. Jpn. 23, 13–26 (1980)

    MathSciNet  MATH  Google Scholar 

  53. Y. Yang, G.-A. Klutke, Improved inspections schemes for deteriorating equipment. Probab. Eng. Inf. Sci. 14, 445–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Y. Yang, G.-A. Klutke, A distribution-free lower bound for availability of quantile-based inspection schemes. IEEE Trans. Reliab. 50(4), 419–421 (2001)

    Article  Google Scholar 

  55. G-A. Klutke, M. Sánchez-Silva, J. Riascos-Ochoa, Long-term maintenance of deteriorating infrastructure: inspection strategies for incipient failures. in Proceedings of the Third International Symposium on Life-Cycle Civil Engineering, IALCCE’12, Vienna, Austria, 3-6 October 2012

    Google Scholar 

  56. S.M. Ross, Stochastic Processes, 2nd edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  57. M.A. Wortman, G.-A. Klutke, H. Ayhan, A maintenance strategy for systems subjected to deterioration governed by random shocks. IEEE Trans. Reliab. 43(3), 439–445 (1994)

    Article  Google Scholar 

  58. G.-A. Klutke, Y. Yang, The availability of inspected systems subject to shocks and graceful deterioration. IEEE Trans. Reliab. 51(3), 371–374 (2002)

    Article  Google Scholar 

  59. P. Kiessler, G.-A. Klutke, Y. Yang, Availability of periodically inspected systems subject to markovian degradation. J. Appl. Probab. 39, 700–711 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Ayhan, J. Limon-Robles, M.A. Wortman, An approach for computing tight numerical bounds on renewal functions. IEEE Trans. Reliab. 48, 182–188 (1999)

    Article  MATH  Google Scholar 

  61. D.A. Elkins, M.A. Wortman, On numerical solution of the markov renewal equation: tight upper and lower kernel bounds. Methodol. Comput. Appl. Probab. 3, 239–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Sánchez-Silva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sánchez-Silva, M., Klutke, GA. (2016). Maintenance Concepts and Models. In: Reliability and Life-Cycle Analysis of Deteriorating Systems. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20946-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20946-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20945-6

  • Online ISBN: 978-3-319-20946-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics