Towards Creation of Implicit HCI Model for Prediction and Prevention of Operators’ Error

  • Pavle MijovićEmail author
  • Miloš Milovanović
  • Miroslav Minović
  • Ivan Mačužić
  • Vanja Ković
  • Ivan Gligorijević
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9170)


This paper describes development of a new generation of the interactive industrial workplace, through introduction of a novel implicit Human Computer Interaction (HCI) model. Proposed framework aims at being a foundation of a computer-based system that enables an increase of workers safety and well-being in industrial environments. Further aim is to enable an increase in production levels, together with improvement of ergonomics of the workplace. Specifically targeted environments are industrial workplaces that include repetitive tasks, which are in most of the cases monotonic in nature. Implicit HCI model could enable development of a specific technical solution that is meant to be an integral and inseparable part of a future workplace and should serve to predict human errors and communicate a warning to a worker. As such, system is meant to increase situational awareness of the workers and prevent errors in operating that would otherwise lead to work-related injuries (including causalities).


Implicit HCI Multimodal HCI Neuroergonomics EEG Kinect 



This research is financed under EU - FP7 Marie Curie Actions Initial Training Networks - FP7-PEOPLE-2011-ITN. We would further like to acknowledge company “Gomma Line” (Serbia), for their assistance and advisory during the experimental set-up phase.


  1. 1.
    Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 677–695 (1997)CrossRefGoogle Scholar
  2. 2.
    Schmidt, A.: Implicit human computer interaction through context. Pers. Technol. 4(2–3), 191–199 (2000)CrossRefGoogle Scholar
  3. 3.
    Jaimes, A., Sebe, N.: Multimodal human–computer interaction: a survey. Comput. Vis. Image Underst. 108(1), 116–134 (2007)CrossRefGoogle Scholar
  4. 4.
    Gordon, R.P.: The contribution of human factors to accidents in the offshore oil industry. Reliab. Eng. Syst. Saf. 61(1), 95–108 (1998)CrossRefGoogle Scholar
  5. 5.
    Hendy, K.C.: A tool for Human Factors Accident Investigation, Classification and Risk Management. DRDC Toronto TR 2002-057. 
Defence R&D Canada (2003)Google Scholar
  6. 6.
    Hamrol, A., Kowalik, D., Kujawińsk, A.: Impact of selected work condition factors on quality of manual assembly process. Hum. Factors Ergon. Manuf. Serv. Ind. 21(2), 156–163 (2011)CrossRefGoogle Scholar
  7. 7.
    Young, M.S., Stanton, N.A.: Attention and automation: new perspectives on mental underload and performance. Theor. Issues Ergon. Sci. 3(2), 178–194 (2002)CrossRefGoogle Scholar
  8. 8.
    Spath, D., Braun, M., Meinken, K.: Human factors in manufacturing. In: Salvendy G. (ed.) Handbook of Human Factors and Ergonomics, 4th edn., pp. 1643–1666 (2012)Google Scholar
  9. 9.
    Parasuraman, R.: Neuroergonomics: research and practice. Theor. Issues Ergon. Sci. 4(1–2), 5–20 (2003)CrossRefGoogle Scholar
  10. 10.
    Parasaruman, R., Rizzo, M.: Neuroergonomics: The Brain at Work. Taylor & Francis, New York (2003)Google Scholar
  11. 11.
    Bonnefond, A., Doignon, C.N., Touzalin, C.P., Dufour, A.: Vigilance and intrinsic maintenance of alert state: an ERP study. Behav. Brain Res. 211(2), 185–190 (2010)CrossRefGoogle Scholar
  12. 12.
    Fowles, D.C.: The three arousal model: implications of Gray’s two-factor learning theory for heart rate, electrodermal activity, and psychopathy. Psychophysiology 17(2), 87–104 (1980)CrossRefGoogle Scholar
  13. 13.
    Mijović, P., Giagloglou, E., Todorović, P., Mačužić, I., Jeremić, B., Gligorijević, I.: A tool for neuroergonomic study of repetitive operational tasks. In Proceedings of the European Conference on Cognitive Ergonomics, pp. 1–2. ACM (2014)Google Scholar
  14. 14.
    Diego-Mas, J.A., Alcaide-Marzal, J.: Using Kinect™ sensor in observational methods for assessing postures at work. Appl. Ergon. 45(4), 976–985 (2014)CrossRefGoogle Scholar
  15. 15.
    Andreoni, G., Mazzola, M., Ciani, O., Zambetti, M., Romero, M., Costa, F., Preatoni, E.: Method for movement and gesture assessment (MMGA) in ergonomics. In: Duffy, V.G. (ed.) ICDHM 2009. LNCS, vol. 5620, pp. 591–598. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)CrossRefGoogle Scholar
  17. 17.
    Li, C., Lee, S.: Computer vision techniques for worker motion analysis to reduce musculoskeletal disorders in construction. Computing in Civil Engineering, pp. 380–387 (2011)Google Scholar
  18. 18.
    Ray, S.J., Teizer, J.: Real-time construction worker posture analysis for ergonomics training. Adv. Eng. Inform. 26(2), 439–455 (2012)CrossRefGoogle Scholar
  19. 19.
    Gevins, A., Leong, H., Du, R., Smith, M.E., Le, J., DuRousseau, D., Zhang, J., Libove, J.: Towards measurement of brain function in operational environments. Biol. Psychol. 40(1), 169–186 (1995)CrossRefGoogle Scholar
  20. 20.
    Horejsi, P., Gorner, T., Kurkin, O., Polasek, P., Januska, M.: Using Kinect technology equipment for ergonomics. Mod. Mach. (MM) Sci. J. 388–391 (2013)Google Scholar
  21. 21.
    Vignais, N., Miezal, M., Bleser, G., Mura, K., Gorecky, D., Marin, F.: Innovative system for real-time ergonomic feedback in industrial manufacturing. Appl. Ergon. 44(4), 566–574 (2013)CrossRefGoogle Scholar
  22. 22.
    Chi, Y.M., Jung, T.P., Cauwenberghs, G.: Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)CrossRefGoogle Scholar
  23. 23.
    De Vos, M., Gandras, K., Debener, S.: Towards a truly mobile auditory brain–computer interface: exploring the P300 to take away. Int. J. Psychophysiol. 91(1), 46–53 (2014)CrossRefGoogle Scholar
  24. 24.
    Sellen, A., Rogers, Y., Harper, R., Rodden, T.: Reflecting human values in the digital age. Commun. ACM 52(3), 58–66 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pavle Mijović
    • 1
    Email author
  • Miloš Milovanović
    • 2
  • Miroslav Minović
    • 2
  • Ivan Mačužić
    • 1
  • Vanja Ković
    • 3
  • Ivan Gligorijević
    • 1
  1. 1.Department for Production and Industrial Engineering, Faculty of EngineeringUniversity of KragujevacKragujevacSerbia
  2. 2.IT Department, Faculty of Organizational SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.Department for Psychology, Faculty of PhilosophyUniversity of BelgradeBelgradeSerbia

Personalised recommendations