Geostatistics for Context-Aware Image Classification

  • Felipe CodevillaEmail author
  • Silvia S. C. Botelho
  • Nelson Duarte
  • Samuel Purkis
  • A. S. M. Shihavuddin
  • Rafael Garcia
  • Nuno Gracias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9163)


Context information is fundamental for image understanding. Many algorithms add context information by including semantic relations among objects such as neighboring tendencies, relative sizes and positions. To achieve context inclusion, popular context-aware classification methods rely on probabilistic graphical models such as Markov Random Fields (MRF) or Conditional Random Fields (CRF). However, recent studies showed that MRF/CRF approaches do not perform better than a simple smoothing on the labeling results.

The need for more context awareness has motivated the use of different methods where the semantic relations between objects are further enforced. With this, we found that on particular application scenarios where some specific assumptions can be made, the use of context relationships is greatly more effective.

We propose a new method, called GeoSim, to compute the labels of mosaic images with context label agreement. Our method trains a transition probability model to enforce properties such as class size and proportions. The method draws inspiration from Geostatistics, usually used to model spatial uncertainties. We tested the proposed method in two different ocean seabed classification context, obtaining state-of-art results.


Context adding Underwater vision Geostatistics Conditional random fields 



The authors would like to thank to the Brazilian National Agency of Petroleum, Natural Gas and Biofuels(ANP), to the Funding Authority for Studies and Projects(FINEP) and to Ministry of Science and Technology (MCT) for their financial support through the Human Resources Program of ANP to the Petroleum and Gas Sector - PRH-ANP/MCT.

This paper is also a contribution of the Brazilian National Institute of Science and Technology - INCT-Mar COI funded by CNPq Grant Number 610012/2011-8.

Additional support was granted by the Spanish National Project OMNIUS (CTM2013-46718-R), and the Generalitat de Catalunya through the TECNIOspring program (TECSPR14-1-0050) to N. Gracias.


  1. 1.
    Agterberg, F.: Mathematical geology. In: General Geology. Encyclopedia of Earth Science, pp. 573–582. Springer, US (1988).
  2. 2.
    Aßfalg, J., Kriegel, H.-P., Pryakhin, A., Schubert, M.: Multi-represented classification based on confidence estimation. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 23–34. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  3. 3.
    Beattie, C., Mills, B., Mayo, V.: Development drilling of the tawila field, yemen, based on three-dimensional reservoir modeling and simulation. In: SPE Annual Technical Conference, pp. 715–725 (1998)Google Scholar
  4. 4.
    Biederman, I., Mezzanotte, R.J., Rabinowitz, J.C.: Scene perception: detecting and judging objects undergoing relational violations. Cogn. Psychol. 14(2), 143–177 (1982)CrossRefGoogle Scholar
  5. 5.
    Boix, X., Gonfaus, J.M., van de Weijer, J., Bagdanov, A.D., Serrat, J., Gonzàlez, J.: Harmony potentials. Int. J. Comput. Vision 96(1), 83–102 (2012)zbMATHCrossRefGoogle Scholar
  6. 6.
    Carbonetto, P., de Freitas, N., Barnard, K.: A statistical model for general contextual object recognition. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 350–362. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Carle, S.F., Fogg, G.E.: Transition probability-based indicator geostatistics. Math. Geol. 28(4), 453–476 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Deutsch, C.V., Journel, A.G., et al.: The application of simulated annealing to stochastic reservoir modeling. SPE Adv. Technol. Ser. 2(02), 222–227 (1994)CrossRefGoogle Scholar
  9. 9.
    Galleguillos, C., Belongie, S.: Context based object categorization: a critical survey. Comput. Vis. Image Underst. 114(6), 712–722 (2010)CrossRefGoogle Scholar
  10. 10.
    Grimmett, G.R.: A theorem about random fields. Bull. Lond. Math. Soc. 5(1), 81–84 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFS with Gaussian edge potentials. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 109–117. Curran Associates, Inc (2011)Google Scholar
  12. 12.
    Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)CrossRefGoogle Scholar
  13. 13.
    Lucchi, A., Li, Y., Boix, X., Smith, K., Fua, P.: Are spatial and global constraints really necessary for segmentation? In: IEEE International Conference on Computer Vision (ICCV), pp. 9–16. IEEE (2011)Google Scholar
  14. 14.
    Purkis, S., Vlaswinkel, B., Gracias, N.: Vertical-to-lateral transitions among cretaceous carbonate facies: a means to 3-d framework construction via markov analysis. J. Sediment. Res. 82(4), 232–243 (2012)CrossRefGoogle Scholar
  15. 15.
    Shihavuddin, A., Gracias, N., Garcia, R., Gleason, A.C.R., Gintert, B.: Image-based coral reef classification and thematic mapping. Remote Sens. 5(4), 1809–1841 (2013). CrossRefGoogle Scholar
  16. 16.
    Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vision 81(1), 2–23 (2009)CrossRefGoogle Scholar
  17. 17.
    Tu, Z.: Auto-context and its application to high-level vision tasks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  18. 18.
    Yedidia, J.S., Freeman, W.T., Weiss, Y., et al.: Generalized belief propagation. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 689–695. MIT Press (2001)Google Scholar
  19. 19.
    Zvuloni, A., Artzy-Randrup, Y., Stone, L., Kramarsky-Winter, E., Barkan, R., Loya, Y.: Spatio-temporal transmission patterns of black-band disease in a coral community. PLoS One 4(4), e4993 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Felipe Codevilla
    • 1
    Email author
  • Silvia S. C. Botelho
    • 1
  • Nelson Duarte
    • 1
  • Samuel Purkis
    • 2
  • A. S. M. Shihavuddin
    • 3
  • Rafael Garcia
    • 3
  • Nuno Gracias
    • 3
  1. 1.Center of Computational Sciences (C3)Federal University of Rio Grande (FURG)Rio GrandeBrazil
  2. 2.National Coral Reef InstituteNova Southeastern UniversityDania BeachUSA
  3. 3.Computer Vision and Robotics Institute, Centre d’Investigació En Robòtica SubmarinaUniversitat de GironaGironaSpain

Personalised recommendations