Skip to main content

Learning Human Priors for Task-Constrained Grasping

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9163))

Included in the following conference series:

Abstract

An autonomous agent using manmade objects must understand how task conditions the grasp placement. In this paper we formulate task based robotic grasping as a feature learning problem. Using a human demonstrator to provide examples of grasps associated with a specific task, we learn a representation, such that similarity in task is reflected by similarity in feature. The learned representation discards parts of the sensory input that is redundant for the task, allowing the agent to ground and reason about the relevant features for the task. Synthesized grasps for an observed task on previously unseen objects can then be filtered and ordered by matching to learned instances without the need of an analytically formulated metric. We show on a real robot how our approach is able to utilize the learned representation to synthesize and perform valid task specific grasps on novel objects.

This work was supported by the Swedish Foundation for Strategic Research, the Belgian National Fund for Scientific Research (Fnrs), the Swedish Research Council, and the EU project EU ERC FLEXBOT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Song, D., Huebner, K., Kyrki, V., Kragic, D.: Learning task constraints for robot grasping using graphical models. In: IROS (2010)

    Google Scholar 

  2. Song, D., Ek, C.H., Huebner, K., Kragic, D.: Embodiment-specific representation of robot grasping using graphical models and latent-space discretization. In: IROS, pp. 980–986 (2011)

    Google Scholar 

  3. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Robot. Res. 27(2), 157–173 (2008)

    Article  Google Scholar 

  4. Boularias, A., Kroemer, O., Peters, J.: Learning robot grasping from 3-D images with Markov Random Fields. In: IROS, pp. 1548–1553 (2011)

    Google Scholar 

  5. Detry, R., Ek, C.H., Madry, M., Kragic, D.: Learning a dictionary of prototypical grasp-predicting parts from grasping experience. In: ICRA (2011)

    Google Scholar 

  6. Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.: Template-based learning of grasp selection. In: ICRA (2012)

    Google Scholar 

  7. Kroemer, O., Ugur, E., Oztop, E., Peters, J.: A kernel-based approach to direct action perception. In: ICRA, pp. 2605–2610 (2012)

    Google Scholar 

  8. Ying, L., Fu, J.L., Pollard, N.S.: Data-driven grasp synthesis using shape matching and task-based pruning. IEEE Trans. Visual Comput. Graphics 13(4), 732–747 (2007)

    Article  Google Scholar 

  9. Stark, M., Lies, P., Zillich, M., Wyatt, J.C., Schiele, B.: Functional object class detection based on learned affordance cues. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 435–444. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Aleotti, J., Caselli, S.: Part-based robot grasp planning from human demonstration. In: ICRA, pp. 4554–4560 (2011)

    Google Scholar 

  11. Hjelm, M., Detry, R., Ek, C.H., Kragic, D.: Cross-object grasp transfer. In: ICRA, Representations for Cross-task (2014)

    Google Scholar 

  12. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  13. Bertenthal, B.I.: Origins and early development of perception, action, and representation. Annu. Rev. Psychol. 47(1), 431–459 (1996)

    Article  Google Scholar 

  14. Berthier, N.E., Clifton, R.K., Gullapalli, V., McCall, D.D., Robin, D.J.: Visual information and object size in the control of reaching. J. Mot. Behav. 28(3), 187–197 (1996)

    Article  Google Scholar 

  15. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, pp. 1–2. Prague (2004)

    Google Scholar 

  16. Rusu, R.B., Blodow, N., Beetz, M.: Fast Point Feature Histograms (FPFH) for 3D registration. In: ICRA, pp. 3212–3217 (2009)

    Google Scholar 

  17. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  18. Bergström, N., Bohg, J., Kragic, D.: Integration of visual cues for robotic grasping. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 245–254. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Henrik Ek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hjelm, M., Ek, C.H., Detry, R., Kragic, D. (2015). Learning Human Priors for Task-Constrained Grasping . In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20904-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20903-6

  • Online ISBN: 978-3-319-20904-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics