Skip to main content

Object Detection and Terrain Classification in Agricultural Fields Using 3D Lidar Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9163))

Abstract

Autonomous navigation and operation of agricultural vehicles is a challenging task due to the rather unstructured environment. An uneven terrain consisting of ground and vegetation combined with the risk of non-traversable obstacles necessitates a strong focus on safety and reliability. This paper presents an object detection and terrain classification approach for classifying individual points from 3D point clouds acquired using single multi-beam lidar scans. Using a support vector machine (SVM) classifier, individual 3D points are categorized as either ground, vegetation, or object based on features extracted from local neighborhoods. Experiments performed at a local working farm show that the proposed method has a combined classification accuracy of \(91.6\,\%\), detecting points belonging to objects such as humans, animals, cars, and buildings with \(81.1\,\%\) accuracy, while classifying vegetation with an accuracy of \(97.5\,\%\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Castano, A., Matthies, L.: Foliage discrimination using a rotating ladar. In: 2003 IEEE International Conference on Robotics and Automation, vol. 1, pp. 1–6 (2003)

    Google Scholar 

  2. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011). Article No. 27

    Article  Google Scholar 

  3. Christiansen, P., Kragh, M., Steen, K.A., Karstoft, H., Jørgensen, R.N.: Advanced sensor platform for human detection and protection in autonomous farming. In: 10th European Conference on Precision Agriculture (ECPA 2015) (2015)

    Google Scholar 

  4. Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., Frenkel, A.: On the segmentation of 3D lidar point clouds. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 2798–2805. IEEE (2011)

    Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  6. Hadsell, R., Bagnell, J.A., Huber, D., Hebert, M.: Space-carving kernels for accurate rough terrain estimation. Int. J. Robot. Res. 29(8), 981–996 (2010)

    Article  Google Scholar 

  7. Hebert, M., Vandapel, N.: Terrain classification techniques from ladar data for autonomous navigation. In: Collaborative Technology Alliances Conference (2003)

    Google Scholar 

  8. Lalonde, J.F., Vandapel, N., Huber, D.F., Hebert, M.: Natural terrain classification using three-dimensional ladar data for ground robot mobility. J. Field Robot. 23(10), 839–861 (2006)

    Article  Google Scholar 

  9. Lalonde, J.F., Unnikrishnan, R., Vandapel, N., Hebert, M.: Scale selection for classification of point-sampled 3D surfaces. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, pp. 285–292 (2005)

    Google Scholar 

  10. Lim, E.H., Suter, D.: 3D terrestrial LIDAR classifications with super-voxels and multi-scale conditional random fields. CAD Comput. Aided Des. 41(10), 701–710 (2009)

    Article  Google Scholar 

  11. Luettel, T., Himmelsbach, M., Wuensche, H.J.: Autonomous ground vehiclesconcepts and a path to the future. In: Proceedings of the IEEE, vol. 100, (Special Centennial Issue), pp. 1831–1839, May 2012

    Google Scholar 

  12. Macedo, J., Manduchi, R., Matthies, L.: Ladar-based discrimination of grass from obstacles for autonomous navigation. In: Proceedings of the International Symposium on Experimental Robotics VII (ISER 2001), pp. 111–120 (2001)

    Google Scholar 

  13. Manduchi, R., Castano, A., Talukder, A., Matthies, L.: Obstacle detection and terrain classification for autonomous off-road navigation. Auton. Robots 18(1), 81–102 (2005)

    Article  Google Scholar 

  14. Matthies, L., Bergh, C., Castano, A., Macedo, J., Manduchi, R.: Obstacle detection in foliage with ladar and radar. In: Proceedings of ISRR, pp. 291–300 (2003)

    Google Scholar 

  15. McDaniel, M.W., Nishihata, T., Brooks, C.A., Lagnemma, K.: Ground plane identification using LIDAR in forested environments. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3831–3836 (2010)

    Google Scholar 

  16. Spinello, L., Arras, K.O., Triebel, R., Siegwart, R.: A layered approach to people detection in 3d range data. In: Proceedings of the AAAI Conference on Artificial Intelligence: Physically Grounded AI Track (AAAI) (2010)

    Google Scholar 

  17. Unnikrishnan, R., Hebert, M.: Multi-scale interest regions from unorganized point clouds. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops (2008)

    Google Scholar 

  18. Vandapel, N., Huber, D., Kapuria, A., Hebert, M.: Natural terrain classification using 3-D ladar data. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 5, pp. 5117–5122 (2004)

    Google Scholar 

  19. Wellington, C., Stentz, A.: Online adaptive rough-terrain navigation in vegetation. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 1, pp. 96–101 (2004)

    Google Scholar 

Download references

Acknowledgements

This research is sponsored by the Innovation Fund Denmark as part of the project “SAFE - Safer Autonomous Farming Equipment” (project no. 16-2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikkel Kragh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kragh, M., Jørgensen, R.N., Pedersen, H. (2015). Object Detection and Terrain Classification in Agricultural Fields Using 3D Lidar Data. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20904-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20903-6

  • Online ISBN: 978-3-319-20904-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics