Can Speedup Assist Accuracy? An On-Board GPU-Accelerated Image Georeference Method for UAVs

  • Loukas Bampis
  • Evangelos G. Karakasis
  • Angelos Amanatiadis
  • Antonios Gasteratos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9163)


This paper presents a georeferenced map extraction method, for Medium-Altitude Long-Endurance UAVs. The adopted technique of projecting world points to an image plane is a perfect candidate for a GPU implementation. The achieved high frame rate leads to a plethora of measurements even in the case of a low-power mobile processing unit. These measurements can later be combined in order to refine the output and create a more accurate result.


Global Position System Inertial Measurement Unit Digital Terrain Model High Frame Rate Digital Surface Model 


  1. 1.
    Amanatiadis, A., Karakasis, E., Bampis, L., Giitsidis, T., Panagiotou, P., Sirakoulis, G.C., Gasteratos, A., Tsalides, P., Goulas, A., Yakinthos, K.: The hcuav project: electronics and software development for medium altitude remote sensing. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 1–5 (2014)Google Scholar
  2. 2.
    Amanatiadis, A., Bampis, L., Gasteratos, A.: Accelerating single-image super-resolution polynomial regression in mobile devices. IEEE Trans. Consum. Electron. 61(1), 63–71 (2015)CrossRefGoogle Scholar
  3. 3.
    Choi, K., Lee, I.: A UAV-based close-range rapid aerial monitoring system for emergency responses. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38, 247–252 (2011)Google Scholar
  4. 4.
  5. 5.
    Karakasis, E.G., Bampis, L., Amanatiadis, A., Gasteratos, A., Tsalides, P.: Digital elevation model fusion using spectral methods. In: IEEE International Conference on Imaging Systems and Techniques, pp. 340–345 (2014)Google Scholar
  6. 6.
    Küng, O., Strecha, C., Beyeler, A., Zufferey, J.C., Floreano, D., Fua, P., Gervaix, F.: The accuracy of automatic photogrammetric techniques on ultra-light uav imagery. In: UAV-g 2011-Unmanned Aerial Vehicle in Geomatics (2011)Google Scholar
  7. 7.
    The lidar DEM data website.
  8. 8.
    Paull, L., Thibault, C., Nagaty, A., Seto, M., Li, H.: Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle. IEEE Trans. Cybern. 44(9), 1605–1618 (2014)CrossRefGoogle Scholar
  9. 9.
    Qi, H., Moore, J.B.: Direct kalman filtering approach for gps/ins integration. IEEE Trans. Aerosp. Electron. Syst. 38(2), 687–693 (2002)CrossRefGoogle Scholar
  10. 10.
    Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D.: Uav photogrammetry for mapping and 3d modeling-current status and future perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38(1), C22 (2011)Google Scholar
  11. 11.
    Thomas, U., Kurz, F., Rosenbaum, D., Mueller, R., Reinartz, P.: Gpu-based orthorectification of digital airborne camera images in real time. In: Proceedings of the XXI ISPRS Congress (2008)Google Scholar
  12. 12.
    Wang, Y., Fevig, R., Schultz, R.R.: Super-resolution mosaicking of UAV surveillance video. In: IEEE International Conference on Image Processing, pp. 345–348 (2008)Google Scholar
  13. 13.
    Xiang, H., Tian, L.: Method for automatic georeferencing aerial remote sensing (rs) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 108(2), 104–113 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Loukas Bampis
    • 1
  • Evangelos G. Karakasis
    • 1
  • Angelos Amanatiadis
    • 1
  • Antonios Gasteratos
    • 1
  1. 1.Department of Production and Management EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations