Skip to main content

Genetic Programming Applications in Chemical Sciences and Engineering

  • Chapter

Abstract

Genetic programming (GP) (Koza, Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems, Stanford University, Stanford, 1990) was originally proposed for automatically generating computer programs that would perform pre-defined tasks. There exist two other important GP applications, namely classification and “symbolic regression” that are being utilized widely in pattern recognition and data-driven modeling, respectively. As compared to the classification, GP has found more applications for its capability to effectively perform symbolic regression (SR). Given an input–output data set SR can search and optimize an appropriate linear/non-linear data-fitting function and all its parameters. The GP-based symbolic regression (GPSR) offers an attractive avenue to extract correlations, explore candidate models and provide optimal solutions to the data-driven modeling problems. Despite its novelty and effectiveness, GP—unlike artificial neural networks and support vector regression—has not seen an explosive growth in its applications. Owing to the availability of feature-rich and user-friendly software packages as also faster computers (including parallel computing devices), there has been a spate of research publications in recent years exploiting the significant potential of GP for diverse classification and modeling applications in chemistry and related sciences and engineering. Accordingly, this chapter provides a bird’s eye-view of the ever increasing applications of GP in the chemical sciences and engineering with the objective of bringing out its immense potential in solving diverse problems. The present chapter not only focuses on the important GP-applications but also offers guidelines to develop optimal GP models. Additionally, a non-exclusive list of GP software packages is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguiar-Pulido V, Gestal M, Cruz-Monteagudo M et al (2013) Evolutionary computation and QSAR research. Curr Comput Aided Drug Des 9 (2):206-25

    Article  Google Scholar 

  • Ahmed S, Zhang M, Peng L (2014) Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming. Connect Sci 26(3): 215-243

    Article  Google Scholar 

  • Alfrey T Jr., Price CC, (1947) Relative reactivities in vinyl copolymerization. J Polym Sci 2: 101-106

    Article  Google Scholar 

  • Almeida GM, Silva VVR, Nepomuceno EG et al (2005) Application of genetic programming for fine tuning PID controller parameters designed through Ziegler-Nichols technique. In: Wang L, Chen K, Ong YS (eds) Proceedings of the first international conference on advances in natural computation (ICNC’05), vol part III. Springer, Heidelberg, 2005

    Google Scholar 

  • AlQuraishi AA (2009) Determination of crude oil saturation pressure using linear genetic programming. Energy Fuels 23:884-887

    Article  Google Scholar 

  • Alsberg BK, Marchand-Geneste N, King RD (2000) A new 3D molecular structure representation using quantum topology with application to structure–property relationships. Chemometr Intell Lab 54(2): 75–91

    Article  Google Scholar 

  • Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  Google Scholar 

  • Anderson B, Svensson P, Nordahl M et al (2000) On-line evolution of control for a four-legged robot using genetic programming. In: Cagnoni S et al (eds) Real World Applications of Evolutionary Computing, Springer, Berlin, p 319-326

    Google Scholar 

  • Atkinson AJ Jr., Huang S-M, Lertora J, Markey SP (eds) (2012) Principles of Clinical Pharmacology. Elsevier, San Diego, USA

    Google Scholar 

  • Bagheri M, Bagheri M, Gandomi AH, Golbraikh A (2012) Simple yet accurate prediction method for sublimation enthalpies of organic contaminants using their molecular structure. Thermochimica Acta 543: 96-106

    Article  Google Scholar 

  • Bagheri M, Gandomi AH, Bagheri M, Shahbaznezhad M (2013) Multi-expression programming based model for prediction of formation enthalpies of nitro-energetic materials. Expert Systems 30: 66–78

    Article  Google Scholar 

  • Bagheri M, Borhani TNG, Gandomi AH et al (2014) A simple modelling approach for prediction of standard state real gas entropy of pure materials. SAR QSAR Environ Res 25:695-710

    Article  Google Scholar 

  • Barmpalexis P, Kachrimanis K, Tsakonas A et al (2011) Symbolic regression via genetic programming in the optimization of a controlled release pharmaceutical formulation. Chemom Intell Lab Syst 107:75-82

    Article  Google Scholar 

  • Baumes LA, Blansché A, Serna P et al (2009) Using genetic programming for an advanced performance assessment of industrially relevant heterogeneous catalysts. Mater Manuf Processes 24:282-292

    Article  Google Scholar 

  • Biswas A, Maitre O, Mondal DN et al (2011) Data-driven multiobjective analysis of manganese leaching from low grade sources using genetic algorithms, genetic programming, and other allied strategies. Mater Manuf Processes 26:415-430

    Article  Google Scholar 

  • Bonet B, Geffner H (1999) Planning as heuristic search: New results. In: Proceedings of the 5th European Conference on Planning (ECP-99). Springer-Verlag, Heidelberg, Germany, p 360–372

    Google Scholar 

  • Cabena P, Hadjnian P, Stadler R et al (1997) Discovering data mining: from concept to implementation, Prentice Hall, USA

    Google Scholar 

  • Cai W, Pacheco-Vega A, Sen M et al (2006) Heat transfer correlations by symbolic regression. Int J Heat Mass Transfer 49(23-24):4352–4359

    Article  MATH  Google Scholar 

  • Can B, Heavy C (2012) A comparison of genetic programming and artificial neural networks in metamodeling of discrete event simulation models. Comput Oper Res 39(2):424-436

    Article  Google Scholar 

  • Cantú-Paz E, Kamath C (2003) Inducing oblique decision trees with evolutionary algorithms. IEEE Trans Evol Comput 7(1):54-68

    Article  Google Scholar 

  • Cao H, Yu J, Kang L et al (1999) The kinetic evolutionary modeling of complex systems of chemical reactions. Comput Chem 23(2):143-151

    Article  Google Scholar 

  • Cartwright H (2008) Using artificial intelligence in chemistry and biology. Taylor & Francis, Boca Raton, FL

    Book  Google Scholar 

  • Castelli M, Vanneschi L, Silva S (2014) Prediction of the unified Parkinson’s disease rating scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst Appl 41(10): 4608–4616

    Article  Google Scholar 

  • Cevik A (2007) Genetic programming based formulation of rotation capacity of wide flange beams. J Constr Steel Res 63: 884–893

    Article  Google Scholar 

  • Cheema JJS, Sankpal NV, Tambe SS et al (2002) Genetic programming assisted stochastic optimization strategies for optimization of glucose to gluconic acid fermentation. Biotechnol Progr 18:1356-1365

    Article  Google Scholar 

  • Cho J-S, Kim H, Choi J-S et al (2010) Prediction of reverse osmosis membrane fouling due to scale formation in the presence of dissolved organic matters using genetic programming. Desalin Water Treat 15:121-128

    Article  Google Scholar 

  • Christin C, Hoefsloot HC, Smilde AK et al (2013) A critical assessment of feature selection methods for biomarker discovery in clinical proteomics. Mol Cell Proteomics 12(1):263-76

    Article  Google Scholar 

  • Costa P, Lobo JMS (2001) Modeling and comparison of dissolution profile. Eur J Pharm Sci 13:123–133

    Article  Google Scholar 

  • Das GK, Acharya S, Anand S et al (1995) Acid pressure leaching of nickel-containing chromite overburden in the presence of additives. Hydrometallurgy 39:117-128

    Article  Google Scholar 

  • Dassau E, Grosman B, Lewin DR (2006) Modeling and temperature control of rapid thermal processing. Comput Chem Eng 30:686-697

    Article  Google Scholar 

  • ECJ 22- A java-based evolutionary computation research system (2014) http://cs.gmu.edu/~eclab/projects/ecj/. (Accessed 3 Dec 2014)

  • Eggermont J, Kok JN, Kosters WA (2004) Genetic programming for data classification: partitioning the search space. Presented at the 19th Annual ACM Symposium on Applied Computing (SAC’04), Nicosia, Cyprus, 14-17 March 2004, p 1001-1005

    Google Scholar 

  • Elsey J, Riepenhausen J, McKay B et al (1997) Modelling and control of a food extrusion process. Comput Chem Eng 21 (supplementary): 5361-5366. Proceedings of the European Symposium on Computer Aided Process Engineering , ESCAPE-7 , Trondheim, Norway

    Google Scholar 

  • Elsharkawy A (2002) Predicting the dewpoint pressure for gas condensate reservoir: Empirical models and equations of state. Fluid Phase Equilib 193:147–165

    Article  Google Scholar 

  • Espejo P, Ventura S, Herrera F (2010) A Survey on the Application of Genetic Programming to Classification. IEEE Trans Syst Man and Cybern 40(2): 121-144

    Article  Google Scholar 

  • Estrada-Gil JK, Fernández-López JC, Hernández-Lemus E, Silva-Zolezzi I, Hidalgo-Miranda A, Jiménez-Sánchez G, Vallejo-Clemente EE (2007) GPDTI: A Genetic Programming Decision Tree Induction method to find epistatic effects in common complex diseases. Bioinformatics 23(13):i167-i174

    Article  Google Scholar 

  • Faris H, Sheta AF (2013) Identification of the Tennessee Eastman chemical process reactor using genetic programming. Int J Adv Sci Technol 50:121-139

    Google Scholar 

  • Fattah KA (2012) K-value program for crude oil components at high pressures based on PVT laboratory data and genetic programming. J King Saud University—Eng Sci 24:141-149

    Google Scholar 

  • Fattah KA (2014) Gas-oil ratio correlation (RS) for gas condensate using genetic programming. J Petrol Explor Prod Technol 4:291-299

    Article  Google Scholar 

  • Ferreira C (2001) Gene Expression Programming in Problem Solving. In: Roy R, Köppen M, Ovaska S, Furuhashi T, Hoffmann F (eds) Soft computing and industry-recent applications, Springer-Verlag, Heidelberg, p 635-654

    Google Scholar 

  • Finley SD, Chu LH, Popel AS (2014) Computational systems biology approaches to anti- angiogenic cancer therapeutics. Drug Discov Today. doi: 10.1016/j.drudis.2014.09.026.

    MATH  Google Scholar 

  • Flasch O (2014) A Friendly Introduction to RGP, RGP release 0.4-1. Available online: http://cran.r-project.org/web/packages/rgp/vignettes/rgp_introduction.pdf. Accessed 6 Nov 2014

  • Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: A new strategy to nonlinear system modeling. Information Sciences 181: 5227–5239

    Article  Google Scholar 

  • Garcia B, Aler R, Ledeezma A, Sanchis (2008) Genetic Programming for Predicting Protein Networks. In: Geffner H et al (eds) Proceedings of the 11th Ibero-American Conference on AI, IBERAMIA 2008, Lisbon, Portugal. Lecture notes in computer science, vol 5290. Springer-Verlag, Germany, p 432-441

    Google Scholar 

  • Garg A, Vijayaraghavan V, Mahapatra SS, Tai K, Wong CH (2014) Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst Appl 41(4):1389-1399

    Article  Google Scholar 

  • Ghosal K, Chandra A, Rajabalaya R et al (2012) Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Pharmazie 67(2):147-55

    Google Scholar 

  • Ghugare SB, Tiwary S, Elangovan V et al (2014a) Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms. Bioenergy Res 7:681-692

    Article  Google Scholar 

  • Ghugare SB, Tiwary S, Tambe SS (2014b) Computational intelligence based models for prediction of elemental composition of solid biomass fuels from proximate Analysis. Int J Syst Assur Eng Manag DOI 10.1007/s13198-014-0324-4 Published online December 7, 2014

  • Giri BK, Hakanen J, Miettinen K et al (2012) Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives. Appl Soft Comput 13:2613-2623

    Article  Google Scholar 

  • Globus AI, Lawton J, Wipke T (1999) Automatic molecular design using evolutionary techniques. Nanotechnology 10: 290-299

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Greeff DJ, Aldrich C (1998) Empirical modelling of chemical process systems with evolutionary programming. Comput Chem Eng 22:995-1005

    Article  Google Scholar 

  • Grosman B, Lewin DR (2002) Automated nonlinear model predictive control using genetic programming. Comput Chem Eng 26:631-640

    Article  Google Scholar 

  • Grosman B, Lewin DR (2004) Adaptive genetic programming for steady-state process modeling. Comput Chem Eng 28:2779-2790

    Article  Google Scholar 

  • Gu MB, Mitchell RJ, Kin BC (2004) Whole cell based biosensors for environmental monitoring and application. Adv Biochem Eng/Biotechnol 87: 269-305

    Article  Google Scholar 

  • Guido RV, Oliva G, Andricopulo AD (2008) Virtual screening and its integration with modern drug design technologies. Curr Med Chem 15(1):37-46

    Article  Google Scholar 

  • Güres S, Mendyk A, Jachowicz R et al (2012) Application of artificial neural networks (ANNs) and genetic programming (GP) for prediction of drug release from solid lipid matrices. Int. J. Pharm. 436(1–2): 877–879

    Article  Google Scholar 

  • Gustafson SM, Burke EK, Krasnogor N (2005) On improving genetic programming for symbolic regression. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2-5 September 2005. Volume 1, IEEE Press, Los Alamitos, p 912–919

    Google Scholar 

  • Hendriks E, Kontogeorgis GM, Dohrn R et al (2010) Industrial Requirements for Thermodynamics and Transport Properties. Ind Eng Chem Res 49:11131–11141

    Article  Google Scholar 

  • Hiden HG, Willis MJ, Tham MT et al (1999) Non-linear principal components analysis using genetic programming. Comput Chem Eng 23: 413-425

    Article  Google Scholar 

  • Hinchcliffe MP, Willis MJ (2003) Dynamic systems modeling using genetic programming. Comput Chem Eng 27:1841-1854

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Hosseini SH, Karami M, Olazar M et al (2014) Prediction of the minimum spouting velocity by genetic programming approach. Ind Eng Chem Res 53:12639-12643

    Article  Google Scholar 

  • Iba H (1996) Random tree generation for genetic programming. In: Voigt H-M, Ebeling W, Rechenberg I, Schwefel, H.-P (eds) 4th International Conference on Parallel Problem Solving from Nature (PPSN IV), Berlin, Germany, 22 - 26 September 1996. Lecture Notes in Computer Science, vol 1411. Springer-Verlag, Germany, p 144–153

    Google Scholar 

  • Iba H, Paul TK, Hasegawa Y (2010) Applied genetic programming and machine learning. Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Ivanova N, Lykidis A (2009) Metabolic Reconstruction. Encyclopedia of Microbiology (Third Edition) p 607–621

    Google Scholar 

  • Keedwell E, Narayanan A (2005) Intelligent bioinformatics. John Wiley & Sons, Chichester, England

    Book  Google Scholar 

  • Khan MW, Alam M (2012) A survey of application: Genomics and genetic programming, a new frontier. Genomics 100(2): 65-71

    Article  Google Scholar 

  • Kondos PD, Demopoulos GP (1993) Statistical modelling of O2-CaCl2-HCl leaching of a complex U/Ra/Ni/As ore. Hydrometallurgy 32: 287-315

    Article  Google Scholar 

  • Kotanchek M (2006) Symbolic regression via genetic programming for nonlinear data modeling. In: Abstracts, 38th Central Regional Meeting of the American Chemical Society, Frankenmuth, MI, United States, 16-20 May 2006. CRM-160

    Google Scholar 

  • Koza JR (1990) Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Stanford University, Stanford

    Google Scholar 

  • Koza JR (1992) Genetic Programming: On the programming of computers by means of natural selection. MIT Press, Cambridge, MA, USA

    MATH  Google Scholar 

  • Koza JR (1991) Concept formation and decision tree induction using the genetic programming paradigm. In: Proceedings of the 1st Workshop on Parallel Problem Solving from Nature (PPSN-1), London, UK. Springer-Verlag, Heidelberg, Germany, p 124–128

    Google Scholar 

  • Koza JR, Mydlowee W, Lanza G, Yu J, Keane MA (2001) Reverse engineering of metabolic pathways from observed data using genetic programming. Pac Symp Biocomput 6: 434-445

    Google Scholar 

  • Koza JR, Poli R (2005) Genetic programming. In: Burke EK, Kendall G (eds), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Springer, Boston, p 127-164

    Chapter  Google Scholar 

  • Koza JR, Rice JP (1991). Genetic generation of both the weights and architecture for a neural network. Neural Networks 2:397-404

    Google Scholar 

  • Kulkarni BD, Tambe SS, Dahule RK et al (1999) Consider genetic programming for process identification. Hydrocarbon Process 78:89-97

    Google Scholar 

  • Langdon WB, Barrett SJ (2005) Evolutionary computing in data mining In: Ghosh A, Jain LC (eds) Studies in Fuzziness and Soft Computing, vol 163. Springer-Verlag, Heidelberg, p 211-235

    Google Scholar 

  • Lanza G, Mydlowec W, Koza JR (2000) Automatic creation of a genetic network for the lac operon from observed data by means of genetic programming. Paper presented at the First International Conference on Systems Biology (ICSB), Tokyo, 14-16 November 2000

    Google Scholar 

  • Lee DG, Kim H-G, Baek W-P et al (1997) Critical heat flux prediction using genetic programming for water flow in vertical round tubes. Int Commun Heat Mass Transfer 24: 919–929

    Article  Google Scholar 

  • Lee TM, Oh H, Choung YK, et al (2009) Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming. Desalination 247:285–294

    Article  Google Scholar 

  • Lennartsson D, Nordin P (2004) A genetic programming method for the identification of signal peptides and prediction of their cleavage sites. EURASIP Journal on Applied Signal Processing 1:138-145

    Article  Google Scholar 

  • Lew TL, Spencer AB, Scarpa F et al (2006) Identification of response surface models using genetic programming. Mech Syst Sig Process 20(8):1819–1831

    Article  Google Scholar 

  • Li J, Wong L (2004) Rule-Based Data Mining Methods for Classification Problems in Biomedical Domains In: A tutorial note for the 15 the European conference on machine learning (ECML) and the 8th European conference on principles and practice of knowledge discovery in databases (PKDD), Pisa, Italy, September 2004

    Google Scholar 

  • Madar J, Abonyi J, Szeifert F (2004) Genetic programming for system identification. In: 4th International conference on intelligent systems design and application. Available via CiteSeerx. http://conf.uni-obuda.hu/isda2004/7_ISDA2004.pdf. Accessed 18 Nov 2014

  • Madár J, Abonyi J, Szeifert F (2005) Genetic programming for the identification of nonlinear input output models. Ind Eng Chem Res 44:3178-3186

    Article  Google Scholar 

  • Madar J, Abonyi J, Szeifert F (2005) Genetic programming for system identification. Available online: http://conf.uni-obuda.hu/isda2004/7_ISDA2004.pdf. Accessed 3 Dec 2014

  • Manshad AK, Ashoori S, Manshad MK et al (2012a) The prediction of wax precipitation by neural network and genetic algorithm and comparison with a multisolid model in crude oil systems. Pet Sci Technol 30:1369-1378

    Article  Google Scholar 

  • Manshad AK, Manshad MK, Ashoori S (2012b) The application of an artificial neural network (ANN) and a genetic programming neural network (GPNN) for the modeling of experimental data of slim tube permeability reduction by asphaltene precipitation in Iranian crude oil reservoirs. Pet Sci Technol 30:2450-2459

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431-441

    Article  MathSciNet  MATH  Google Scholar 

  • Marref A, Basalamah S, Al-Ghamdi R (2013) Evolutionary computation techniques for predicting atmospheric corrosion. Int J Corros. doi: http://dx.doi.org/10.1155/2013/805167

  • Martin MA (2010) First generation biofuels compete. N Biotechnol 27 (5): 596–608

    Article  Google Scholar 

  • McKay B, Willis M, Barton G (1997) Steady-state modeling of chemical systems using genetic programming. Comput Chem Eng 21:981-996

    Article  Google Scholar 

  • McQuiston FC (1978) Heat, mass and momentum transfer data for five plate-fin-tube heat transfer surfaces. ASHRAE Trans 84:266–293

    Google Scholar 

  • Meighani HM, Dehghani A, Rekabdar F et al (2013) Artificial intelligence vs. classical approaches : a new look at the prediction of flux decline in wastewater treatment. Desalin Water Treat 51:7476-7489

    Article  Google Scholar 

  • Motsinger AA, Lee SL, Mellick G, Ritchie MD (2006) GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics 7:39

    Article  Google Scholar 

  • Muzny CD, Huber ML, Kazakov AF (2013) Correlation for the viscosity of normal hydrogen obtained from symbolic regression. J Chem Eng Data 58:969-979

    Article  Google Scholar 

  • Nandi S, Rahman I, Tambe SS, Sonolikar RL, Kulkarni BD (2000) Process identification using genetic programming: A case study involving Fluidized catalytic cracking (FCC) unit. In: Saha RK, Maity BR, Bhattacharyya D, Ray S, Ganguly S, Chakraborty SL (eds) Petroleum refining and petrochemicals based industries in Eastern India, Allied Publishing Ltd., New Delhi, p 195-201

    Google Scholar 

  • Narendra K, Parthasarathy K (1990) Identification and control of dynamic systems using neural networks. IEEE Trans Neural Network 1: 4-27

    Article  Google Scholar 

  • Nemeth LK, Kennedy HTA (1967) Correlation of dewpoint pressure with fluid composition and temperature. SPE J 7:99–104

    Article  Google Scholar 

  • Okhovat A, Mousavi SM (2012) Modeling of arsenic, chromium and cadmium removal by nanofiltration process using genetic programming. Appl Soft Comput 12:793-799

    Article  Google Scholar 

  • Pacheco-Vega A, Cai W, Sen M et al (2003) Heat transfer correlations in an air–water fin-tube compact heat exchanger by symbolic regression. In: Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition, Washington, DC, 15-21 November 2003

    Google Scholar 

  • Pandey DS, Pan I, Das S, Leahy JJ, Kwapinski W (2015) Multi gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier. Bioresource Technology 179:524-533

    Article  Google Scholar 

  • Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84:487–494

    Article  Google Scholar 

  • Park S-M, Han J, Lee S et al (2012) Analysis of reverse osmosis system performance using a genetic programming technique. Desalin Water Treat 43:281-290

    Article  Google Scholar 

  • Patil-Shinde V, Kulkarni T, Kulkarni R, Chavan PD, Sharma T, Sharma BK, Tambe SS, Kulkarni BD (2014) Artificial intelligence-based modeling of high ash coal gasification in a pilot plant scale fluidized bed gasifier. Ind Eng Chem Res. 53:18678–18689; doi: 10.1021/ie500593j

    Article  Google Scholar 

  • Paul TK, Hasegawa Y, Iba H (2006) Classification of gene expression data by majority voting genetic programming classifier. In: 2006 IEEE congress on evolutionary computation, Vancouver, 16-21 July 2006

    Google Scholar 

  • Peng DY, Robinson DB (1976) A new two constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  MATH  Google Scholar 

  • Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299 (5881): 352–355

    Article  Google Scholar 

  • Podola B, Melkonian M (2012) Genetic Programming as a tool for identification of analyte-specificity from complex response patterns using a non-specific whole-cell biosensor. Biosens Bioelectron 33(1):254-259

    Article  Google Scholar 

  • Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Available via lulu: http://lulu.com, http://www.gp-field-guide.org.uk . Accessed on 3 Dec 2014

  • Porter M, Willis M, Hiden HG (1996) Computer-aided polymer design using genetic programming. M Eng. Research Project, Dept. Chemical and Process Engng, University of Newcastle, UK.

    Google Scholar 

  • Register Machine Learning Technologies Inc (2002) Discipulus 5 genetic programming predictive modelling. http://www.rmltech.com/. Accessed 7 Nov 2014

  • Ritchie MD, Motsinger AA, Bush WS (2007) Genetic programming neural networks: A powerful bioinformatics tool for human genetics. Appl Soft Comput 7:471–479

    Article  Google Scholar 

  • Ritchie MD, White BC, Parker JS et al (2003) Optimization of neural network architecture using genetic programming improves detection of gene–gene interactions in studies of human diseases. BMC Bioinf 4:28

    Article  Google Scholar 

  • Sajedian A, Ebrahimi M, Jamialahmadi M (2012) Two-phase inflow performance relationship prediction using two artificial intelligence techniques: Multi-layer perceptron versus genetic programming. Pet Sci Technol 30:1725-1736

    Article  Google Scholar 

  • Samuel, AL (1983) AI, Where it has been and where it is going. In: Proceedings of the 8th International Joint Conference on AI (IJCAI-83), Karlsruhe, Germany. p 1152–1157

    Google Scholar 

  • Sankpal NV, Cheema JJS, Tambe SS et al (2001) An artificial intelligence tool for bioprocess monitoring: application to continuous production of gluconic acid by immobilized aspergillus niger. Biotechnol Lett 23: 911-916

    Article  Google Scholar 

  • Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324:81-85

    Article  Google Scholar 

  • Schmidt M, Lipson H (2014) Eureqa (Version 0.98 beta) [Software]. Available online: www.nutonian.com. Accessed 3 Dec 2014

  • Schneider MV, Orchard S (2011) Omics technologies, data and bioinformatics principles. Methods Mol Biol 719: 3-30

    Article  Google Scholar 

  • Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open source genetic programming toolbox for multi-gene symbolic regression. In: International Multi-Conference of Engineers and Computer Scientists 2010 (IMECS 2010), Kowloon, Hong Kong, 17-19 March 2010. Volume 1. Available online: http://www.iaeng.org/publication/IMECS2010/IMECS2010_pp77-80.pdf

  • Seavey KC, Jones AT, Kordon AK (2010) Hybrid genetic programming - first principles approach to process and product modelling. Ind Eng Chem Res 49(5):2273-2285

    Article  Google Scholar 

  • Sharma S, Tambe SS (2014) Soft-sensor development for biochemical systems using genetic programming. Biochem Eng J 85:89-100

    Article  Google Scholar 

  • Shokir EMEl-M (2008) Dewpoint pressure model for gas condensate reservoirs based on genetic programming. Energy Fuels 22:3194-3200

    Google Scholar 

  • Shokir EMEl-M, Dmour HN (2009) Genetic programming (GP)-based model for the viscosity of pure and hydrocarbon gas mixtures. Energy Fuels 23:3632-3636

    Google Scholar 

  • Shokir EMEl-M, El-Awad MN, Al-Quraishi AA et al (2012) Compressibility factor model of sweet, sour, and condensate gases using genetic programming. Chem Eng Res Des 90:785-792

    Google Scholar 

  • Shokrkar H, Salahi A, Kasiri N et al (2012) Prediction of permeation flux decline during MF of oily wastewater using genetic programming. Chem Eng Res Des 90:846-853

    Article  Google Scholar 

  • Shrinivas K, Kulkarni RP, Ghorpade RV et al (2015) Prediction of reactivity ratios in free-radical copolymerization from monomer resonance-polarity (Q-e) parameters: Genetic programming based models. International Journal of Chemical Reactor Engineering Published Online on 04/03/2015, DOI 10.1515/ijcre-2014-0039.

    Google Scholar 

  • Singh KP, Gupta S (2012) Artificial intelligence based modeling for predicting the disinfection by-products in water. Chemom Intell Lab Syst 114:122–131

    Article  Google Scholar 

  • Smith SL, Lones MA (2009) Implicit Context Representation Cartesian Genetic Programming for the Assessment of Visuo-spatial Ability Evolutionary Computation. In: 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18-21 May 2009

    Google Scholar 

  • Spall JC (1998) Implementation of the Simultaneous Perturbation Algorithm for Stochastic Optimization. IEEE Trans Aerosp Electron Syst 34:817-822

    Article  Google Scholar 

  • Stein L (2001) Genome annotation: from sequence to biology. Nature Reviews Genetics 2:493-503

    Article  Google Scholar 

  • Sugimoto M, Kikuchi S, Tomita M (2005) Reverse engineering of biochemical equations from time-course data by means of genetic programming. Biosystems 80(2):155–164

    Article  Google Scholar 

  • Suh C, Choi B, Lee S et al (2011) Application of genetic programming to develop the model for estimating membrane damage in the membrane integrity test using fluorescent nanoparticle. Desalination 281:80-87

    Article  Google Scholar 

  • Sumathi S, Surekha P (2010) Computational intelligence paradigms theory and applications using MATLAB. Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Tomita Y, Kato R, Okochi M et al (2014) A motif detection and classification method for peptide sequences using genetic programming. J Biosci Bioeng 85: 89–100

    Google Scholar 

  • Tsakonas A, Dounias G, Jabtzen J et al (2004) Evolving rule-based systems in two medical domain using genetic programming. Artif Intell Med 32(3):195-216

    Article  Google Scholar 

  • Tun K, Lakshminarayanan S (2004) Identification of algebraic and static space models using genetic programming. Dyn Control Process Syst 1:311-328

    Google Scholar 

  • Vamce DE, Vance JE (eds) (2008) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam

    Google Scholar 

  • Venkatraman V, Dalby AR, Yang ZR (2004) Evaluation of mutual information and genetic programming for feature selection in QSAR. J Chem Inf Comput Sci 44(5):1686–1692. doi:10.1021/ci049933v

    Article  Google Scholar 

  • Vyas R, Goel P, Karthikeyan M, Tambe SS, Kulkarni BD (2014) Pharmacokinetic modeling of Caco-2 cell permeability using genetic programming (GP) method. Lett Drug Des Discovery 11(9): 1112-1118

    Article  Google Scholar 

  • Wagner S (2009) Heuristic optimization software systems - modeling of heuristic optimization algorithms in the HeuristicLab software environment. PhD Dissertation, Johannes Kepler University, Linz, Austria

    Google Scholar 

  • Wang X-H, Hu Y-D, Li Y-G (2008b) Synthesis of nonsharp distillation sequences via genetic programming. Korean J Chem Eng 25:402-408

    Article  Google Scholar 

  • Wang X-H, Li Y-G (2008) Synthesis of multicomponent products separation sequences via stochastic GP method. Ind Eng Chem Res 47:8815-8822

    Article  Google Scholar 

  • Wang X-H, Li Y-G (2010) Stochastic GP synthesis of heat integrated nonsharp distillation sequences. Chem Eng Res Des 88:45-54

    Article  Google Scholar 

  • Wang X-H, Li Y-G, Hu Y-D et al (2008a) Synthesis of heat-integrated complex distillation systems via genetic programming. Comput Chem Eng 32:1908-1917

    Article  Google Scholar 

  • Wedge DC, Das A, Dost R et al (1999) Real-time vapour sensing using an OFET-based electronic nose and genetic programming. Bioelectrochem Bioenerg 48(2):389-96

    Article  Google Scholar 

  • White DR (2012) Software review: the ECJ toolkit. Genet. Prog. Evol. Mach 13: 65-67

    Article  Google Scholar 

  • Willis M, Hiden H, Hinchcliffe M et al (1997) Systems modeling using genetic programming. Comput Chem Eng 21:1161-1166

    Article  Google Scholar 

  • Witczak M, Obuchowicz A, Korbics J (2002) Genetic programming based approaches to identification and fault diagnosis of non linear dynamic systems. Int J Control 75:1012-1031

    Article  MATH  Google Scholar 

  • Woodward AM, Gilbert RJ, Kell DB (1999) Genetic programming as an analytical tool for non-linear dielectric spectroscopy. Bioelectrochem Bioenerg 48(2):389-396

    Article  Google Scholar 

  • Worzel WP, Yu J, Almal AA et al (2009) Applications of Genetic Programming in Cancer Research. Int J Biochem Cell Biol 41(2): 405–413

    Article  Google Scholar 

  • Xu C, Rangaiah GP, Zhao XS (2014) Application of neural network and genetic programming in modeling and optimization of ultra violet water disinfection reactors, Chem Eng Commun doi: 10.1080/00986445.2014.952813

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev S. Tambe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vyas, R., Goel, P., Tambe, S.S. (2015). Genetic Programming Applications in Chemical Sciences and Engineering. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics