Skip to main content

On the Application of Genetic Programming for New Generation of Ground Motion Prediction Equations

  • Chapter

Abstract

The ground-motion prediction equations (GMPEs) generally predict ground-motion intensities such as peak ground acceleration (PGA), peak ground velocity (PGV), and response spectral acceleration (SA), as a functional form of magnitude, site-to-source distance, site condition, and other seismological parameters. An adequate prediction of the expected ground motion intensities plays a fundamental role in practical assessment of seismic hazard analysis, thus GMPEs are known as the most potent elements that conspicuously affect the Seismic Hazard Analysis (SHA). Recently, beside two common traditional methodologies, i.e. empirical and physical relationships, the application of Genetic Programming, as an optimization technique based on the Evolutionary Algorithms (EA), has taken on vast new dimensions. During recent decades, the complexity of obtaining an appropriate predictive model leads to different studies that aim to achieve Genetic Programming-based GMPEs. In this chapter, the concepts, methodologies and results of different studies regarding driving new ground motion relationships based on Genetic Programming are discussed.

Keywords

  • Ground Motion
  • Genetic Programming
  • Peak Ground Acceleration
  • Gene Expression Programming
  • Peak Ground Velocity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20883-1_11
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-20883-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8

References

  • Ambraseys, N. N., and J. J. Bommer. “Attenuation relations for use in Europe: an overview.” Proceedings of Fifth SECED Conference on European Seismic Design Practice. of, 1995.

    Google Scholar 

  • Abrahamson, N. A., W. J. Silva, and R. Kamai. (2013). “Update of the AS08 Ground-Motion Prediction equations based on the NGA-west2 data set.” Pacific Engineering Research Center Report 4.

    Google Scholar 

  • Alavi, A.H., Ameri, M., Gandomi, A.H., Mirzahosseini, M.R., 2011. Formulation of flow number of asphalt mixes using a hybrid computational method. Construction and Building Materials 25 (3), 1338–1355.

    CrossRef  Google Scholar 

  • Alavi A.H., Gandomi A.H., “Prediction of Principal Ground-Motion Parameters Using a Hybrid Method Coupling Artificial Neural Networks and Simulated Annealing.” Computers & Structures, 89 (23–24): 2176–2194, 2011.

    CrossRef  Google Scholar 

  • Alavi A.H., Gandomi A.H., “A Robust Data Mining Approach for Formulation of Geotechnical Engineering Systems.” International Journal for Computer-Aided Engineering and Software-Engineering Computations, 28(3): 242–274, 2011.

    MATH  Google Scholar 

  • Alavi A.H., Gandomi A.H., Modaresnezhad M., Mousavi M., “New Ground-Motion Prediction Equations Using Multi Expression Programming.” Journal of Earthquake Engineering, 15(4): 511–536, 2011.

    CrossRef  Google Scholar 

  • Azarbakht, Alireza, Sahar Rahpeyma, and Mehdi Mousavi. (2014). “A New Methodology for Assessment of the Stability of round‐Motion prediction Equations.” Bulletin of the Seismological Society of America. 104(3), 1447–1457.

    CrossRef  Google Scholar 

  • Banzhaf, Wolfgang, et al. Genetic programming: an introduction. Vol. 1. San Francisco: Morgan Kaufmann, 1998.

    CrossRef  Google Scholar 

  • Brameier M. and Banzhaf W. (2007) Linear Genetic Programming. Number XVI in Genetic and Evolutionary Computation. Springer.

    Google Scholar 

  • Brameier M. and Banzhaf W. (2001) A comparison of linear genetic programming and neural networks in medical data mining, IEEE Trans. Evol. Comput., 5(1), 17--26.

    Google Scholar 

  • Boore, David M., and William B. Joyner. “The empirical prediction of ground motion.” Bulletin of the Seismological Society of America 72.6B (1982): S43-S60.

    Google Scholar 

  • Campbell, K.W (1985), “Strong motion attenuation relations: a ten-year perspective”, Earthquake Spectra, Vol. 1, pp. 759-804_1985.

    Google Scholar 

  • Cabalar, A.F. and Cevik, A. (2009). Genetic Programming-Based Attenuation Relationship: An Application of Recent Earthquakes in Turkey, Computers and Geosciences, 35(9), 1884-1896.

    CrossRef  Google Scholar 

  • Cramer, N. L. (1985, July). A representation for the adaptive generation of simple sequential programs. In Proceedings of the First International Conference on Genetic Algorithms (pp. 183-187).

    Google Scholar 

  • Douglas, J. (2011). Ground Motion Estimation Equations 1964–2010, Pacific Earthquake Engineering Research Center College of Engineering, University of California, Berkeley.

    Google Scholar 

  • Elnashai, Amr S., and Luigi Di Sarno. Fundamentals of earthquake engineering. Chichester, UK: Wiley, 2008.

    CrossRef  Google Scholar 

  • Elshorbagy, A., Corzo, G., Srinivasulu, S., & Solomatine, D. P. (2010). Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: Application. Hydrology and Earth System Sciences, 14(10), 1943-1961.

    CrossRef  Google Scholar 

  • Fukushima, Y. and T. Tanaka (1990), “A new attenuation relation for peak horizontal acceleration of strong earthquake ground motion in Japan”, Bull. Seism. Soc. Am., Vol. 80, pp. 757-783.

    Google Scholar 

  • Friedberg, R. M. (1958). A learning machine: Part I. IBM Journal of Research and Development, 2(1), 2-13.

    CrossRef  MathSciNet  Google Scholar 

  • Ferreira, C., 2001b. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 13 (2), 87–129.

    MATH  MathSciNet  Google Scholar 

  • Ferreira, C., 2001a. Gene expression programming in problem solving. In: Proceedings of the Sixth Online World Conference on Soft Computing in Industrial Applications, 10–24. /http://www.gene-expression-programming.com/author.asp.

  • Ferreira, C., 2002. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Angra do Heroisma, Portugal. /http://www.gene-expression-programming.com/author.asp.

  • Fister, I., Gandomi, A.H., Fister, I.J., Mousavi, M., Farhadi, A., (2014), Soft Computing in Earthquake engineering: A short overview. International Journal of Earthquake Engineering and Hazard Mitigation 2 (2), 42-48.

    Google Scholar 

  • Gandomi, A. H., A. H. Alavi, M. Mousavi and S.M. Tabatabaei, (2011), A hybrid computational approach to derive new ground-motion prediction equations, Engineering Applications of Artificial Intelligence 24 (4), 717-732.

    CrossRef  Google Scholar 

  • Gandomi, A. H., Yang, X. S., Talatahari, S., & Alavi, A. H. (Eds.). (2013). Metaheuristic applications in structures and infrastructures.

    Google Scholar 

  • Gandomi M, Soltanpour M, Zolfaghari MR, Gandomi AH. (2015). Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique. Geoscience Frontiers.

    Google Scholar 

  • Gandomi A.H., Alavi A.H. (2012). A New Multi-Gene Genetic Programming Approach to Nonlinear System Modeling. Part II: Geotechnical and Earthquake Engineering Problems. Neural Computing and Applications 21(1), 189--201.

    CrossRef  Google Scholar 

  • Gepsoft- Modeling made easy-data mining software www.gepsoft.com (accessed 15.07.08).

  • Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, First Edition, Addison-Wesley publication, Inc. Reading, MA, 432.

    Google Scholar 

  • Gandomi, A.H., Alavi, A.H., Arjmandi, P., Aghaeifar, A., Seyednour, R., 2010. Modeling of compressive strength of hpc mixes using a combined algorithm of genetic programming and orthogonal least squares. Journal of Mechanics of Materials and Structures 5 (5), 735–753.

    CrossRef  Google Scholar 

  • Idriss, I. M. (1978). Characteristics of earthquake ground motions, state-of-the-arts report, earthquake engineering and soil dynamics’. In Proceeding of the ASCE Geotechnical Engineering Division specialty conference: Earthquake Engineering and Soil Dynamic, Vol.III. pp:1151–1265

    Google Scholar 

  • Joyner, William B., and David M. Boore. “Measurement, characterization, and prediction of strong ground motion.” Earthquake Engineering and Soil Dynamics II, Proc. Am. Soc. Civil Eng. Geotech. Eng. Div. Specialty Conf. 1988.

    Google Scholar 

  • Joyner, W. B., and D. M. Boore. “Recent developments in strong-motion attenuation relationships.” NIST SPECIAL PUBLICATION SP (1996): 101-116.

    Google Scholar 

  • Johari, A., Habibagahi, G., and Ghahramani, A. (2006). Prediction of Soil-Water by Characteristic Curve Using Genetic Programming, Journal of Geotechnical and Geoenvironmental Engineering, 132(5), 661-665.

    CrossRef  Google Scholar 

  • Krishnan, S., Chen, J., Komatitsch, D., Tromp, J., 2006. Case studies of damage to tall steel moment-frame buildings in Southern California during large San Andreas earthquakes. Bulletin of the Seismological Society of America 96, 1523–1537.

    CrossRef  Google Scholar 

  • Komatitsch D, Liu Q, Tromp J, Su ss P, Stidham C, Shaw JH. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull Seismol Soc Am 2004;94:187–206.

    CrossRef  Google Scholar 

  • Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, Massachusetts, 840.

    Google Scholar 

  • Kermani, E., Jafarian, Y., and Baziar, M.H. (2009). New Predictive Models for the Ratio v of Strong Ground Motions using Genetic Programming, International Journal of Civil Engineering, 7(4), 246-239.

    Google Scholar 

  • Langdon, W.B., et al. (2008). “Genetic programming: An introduction and tutorial, with a survey of techniques and applications.” Computational Intelligence: A Compendium. Springer Berlin Heidelberg, pp. 927--1028.

    Google Scholar 

  • McGuire, R.K. (1995). Probabilistic Seismic Hazard Analysis and Design Earthquakes: Closing the Loop, Bulletin of the Seismological Society of America, 85(5), 1275-1284.

    Google Scholar 

  • McGuire, R. K., 2004. Seismic Hazard and Risk Analysis, Monograph MNO-10, Earthquake Engineering Research Institute, Oakland, CA.

    Google Scholar 

  • McGarr, A. (1984), “Scaling of ground motion parameters, state of stress, and focal depth”, J. Geophys. Res., Vol. 89, pp. 6969-6979.

    Google Scholar 

  • Midorikawa, S., M. Matsuoka and K. Sakugawa (1994), “Site effects on strong-motion records during the 1987 Chibaken-toho-oki_Japan earthquake”, The 9 th Japan Earthquake Engineering Symposium, Vol. 3, pp. 85-90.

    Google Scholar 

  • Mohammadnejad A.K., Mousavi S.M., Torabi M., Mousavi M., Alavi A.H. (2012). Robust Attenuation Relations for Peak Time-Domain Parameters of Strong Ground-Motions. Environmental Earth Sciences, 67(1):53-70.

    CrossRef  Google Scholar 

  • Nordin, P. (1997). Evolutionary program induction of binary machine code and its applications. Munster: Krehl.

    Google Scholar 

  • Oltean, M. and, Gross, C., 2003. A comparison of several linear genetic programming techniques. Advances in Complex Systems 14(4), 1--29.

    Google Scholar 

  • OpenSHA (2009). Open Seismic Hazard Analysis Computer Platform, http://www.opensha.org/

  • Petersen, M. D., Frankel, A. D., Harmsen, S. C., Mueller, C. S., Haller, K. M., Wheeler, R. L., Wesson, R. L., Zeng, Y., Boyd, O. S., Perkins, D. M., Luco, N., Field, E. H., Wills, C. J., and Rukstales, K. S., 2008. Documentation for the 2008 update of the United States national seismic hazard maps, USGS Open-File Report 2008-1128.

    Google Scholar 

  • Power, Maurice, et al. “An overview of the NGA project.” Earthquake Spectra 24.1 (2008): 3-21.

    CrossRef  Google Scholar 

  • Papageorgiou AS, Aki K. A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion, Part I: description of the model. Bull Seismol Soc Am 1983;73:693–722.

    Google Scholar 

  • Rahpeyma, S., A. Azarbakht and M. Mousavi. (2013) “A new Peak-Ground-Acceleration prediction model by using genetic optimization techniques for Iran’s plateau database”. Journal of Seismology and Earthquake Engineering, 15(3) p153-170

    Google Scholar 

  • Samuel AL (1983) AI, where it has been and where it is going. In: IJCAI, pp 1152–1157

    Google Scholar 

  • Silva, S. (2007). GPLAB_A Genetic Programming Toolbox for MATLAB, Version3, http://gplab.sourceforg.net

  • Scherbaum, F., Delavaud, E., and Riggelsen, C. (2009). Model Selection in Seismic Hazard Analysis: An Information-Theoretic Perspective, Bulletin of the Seismological Society of America, 99(6), 3234-3247.

    CrossRef  Google Scholar 

  • Trifunac, M. D., and A. G. Brady. “Correlations of peak acceleration, velocity and displacement with earthquake magnitude, distance and site conditions.” Earthquake Engineering & Structural Dynamics 4.5 (1976): 455-471.

    CrossRef  Google Scholar 

  • Torres, R. D. S., Falcão, A. X., Gonçalves, M. A., Papa, J. P., Zhang, B., Fan, W., & Fox, E. A. (2009). A genetic programming framework for content-based image retrieval. Pattern Recognition, 42(2), 283-292.

    CrossRef  MATH  Google Scholar 

  • Yang, X. S., Gandomi, A. H., Talatahari, S., & Alavi, A. H. (Eds.). (2013). Metaheuristics in Water, Geotechnical and Transportation Engineering. Elsevier, Waltham, MA, 2013.

    Google Scholar 

  • Youngs, R.R., S.J. Chiou, W.J. Silva, and J.R. Humphrey (1997), “Strong ground motion attenuation relationships for subduction zone earthquakes”, Seism. Res. Lett., Vol. 68, pp. 58-73.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mousavi .

Editor information

Editors and Affiliations

1 Electronic Supplementary material

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mousavi, M., Azarbakht, A., Rahpeyma, S., Farhadi, A. (2015). On the Application of Genetic Programming for New Generation of Ground Motion Prediction Equations. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)