Skip to main content

A Fully Fault-Tolerant Representation of Quantum Circuits

  • Conference paper
  • First Online:
Reversible Computation (RC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9138))

Included in the following conference series:

Abstract

We present a quantum circuit representation consisting entirely of qubit initialisations (I), a network of controlled-NOT gates (C) and measurements with respect to different bases (M). The ICM representation is useful for optimisation of quantum circuits that include teleportation, which is required for fault-tolerant, error corrected quantum computation. The non-deterministic nature of teleportation necessitates the conditional introduction of corrective quantum gates and additional ancillae during circuit execution. Therefore, the standard optimisation objectives, gate count and number of wires, are not well-defined for general teleportation-based circuits. The transformation of a circuit into the ICM representation provides a canonical form for an exact fault-tolerant, error corrected circuit needed for optimisation prior to the final implementation in a realistic hardware model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical Review A 70(5), 052328 (2004)

    Article  Google Scholar 

  2. Aharonov, D.: A simple proof that Toffoli and Hadamard are quantum universal. arXiv preprint quant-ph/0301040 (2003)

  3. Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of clifford+t circuits via matroid partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33(10), 1476–1489 (2014)

    Article  Google Scholar 

  4. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), 818–830 (2013)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an Unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A 71(2), 022316 (2005)

    Article  MathSciNet  Google Scholar 

  7. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nature Physics 5(1), 19–26 (2009)

    Article  Google Scholar 

  8. Cheung, D., Maslov, D., Severini, S.: Translation techniques between quantum circuit architectures. In: Workshop on Quantum Information Processing. Citeseer (2007)

    Google Scholar 

  9. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of the ACM (JACM) 54(2), 8 (2007)

    Article  MathSciNet  Google Scholar 

  10. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New Journal of Physics 11(8), 083032 (2009)

    Article  Google Scholar 

  11. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Reports on Progress in Physics 76(7), 076001 (2013)

    Article  Google Scholar 

  12. Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nature communications 4 (2013)

    Google Scholar 

  13. Devitt, S.J.: The Mequanics game (2013). www.mequanics.com

  14. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface Codes, Towards practical large-scale quantum computation. Phys. Rev. A. 86, 032324 (2012)

    Article  Google Scholar 

  15. Fowler, A.G.: Time-optimal quantum computation. arXiv preprint arXiv:1210.4626 (2012)

  16. Gottesman, D.: The Heisenberg Representation of Quantum computers. quant-ph/9807006 (1998)

  17. Gottesman, D.: What is the overhead required for fault-tolerant quantum computation? arXiv preprint arXiv:1310.2984 (2013)

  18. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Information & Computation 11(1), 142–166 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Jones, C.N.: Novel constructions for the fault-tolerant Toffoli gate. arXiv preprint arXiv:1212.5069 (2012)

  20. Cody Jones, N., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: A Layered Architecture for Quantum Computing Using Quantum Dots. Phys. Rev. X., 2(031007) (2012)

    Google Scholar 

  21. Miller, D.M., Soeken, M., Drechsler, R.: Mapping NCV circuits to optimized clifford+T circuits. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 163–175. Springer, Heidelberg (2014)

    Google Scholar 

  22. Moore, S.K.: Computing’s power limit demonstrated. Spectrum, IEEE 49(5), 14–16 (2012)

    Article  Google Scholar 

  23. Nemoto, K., Trupke, M., Devitt, S.J., Stephens, A.M., Buczak, K., Nobauer, T., Everitt, M.S., Schmiedmayer, J., Munro, W.J.: Photonic architecture for scalable quantum information processing in NV-diamond. Phys. Rev. X. 4, 031022 (2014)

    Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)

    Google Scholar 

  25. Paetznik, A., Fowler, A.G.: Quantum circuit optimization by topological compaction in the surface code. arXiv preprint arXiv:1304.2807 (2013)

  26. Paler, A., Devitt, S., Nemoto, K., Polian, I.: Software-based Pauli tracking in fault-tolerant quantum circuits. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1–4. IEEE (2014)

    Google Scholar 

  27. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a survey. ACM Computing Surveys (CSUR) 45(2), 21 (2013)

    Article  Google Scholar 

  28. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  29. Wille, R., Drechsler, R.: Towards a design flow for reversible logic. Springer (2010)

    Google Scholar 

  30. Wooters, W.K., Zurek, W.H.: A Single Quantum Cannot be Cloned. Nature (London) 299, 802 (1982)

    Article  Google Scholar 

  31. Yao, N.Y., Jiang, L., Gorshkov, A.V., Maurer, P.C., Giedke, G., Cirac, J.I., Lukin, M.D.: Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor. Nature Communications 3, 800 (2012)

    Article  Google Scholar 

  32. Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate construction. Physical Review A 62(5), 052316 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Paler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Paler, A., Polian, I., Nemoto, K., Devitt, S.J. (2015). A Fully Fault-Tolerant Representation of Quantum Circuits. In: Krivine, J., Stefani, JB. (eds) Reversible Computation. RC 2015. Lecture Notes in Computer Science(), vol 9138. Springer, Cham. https://doi.org/10.1007/978-3-319-20860-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20860-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20859-6

  • Online ISBN: 978-3-319-20860-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics