Skip to main content

Ricercar: A Language for Describing and Rewriting Reversible Circuits with Ancillae and Its Permutation Semantics

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 9138)

Abstract

Previously, Soeken and Thomsen presented six basic semantics-preserving rules for rewriting reversible logic circuits, defined using the well-known diagrammatic notation of Feynman. While this notation is both useful and intuitive for describing reversible circuits, its shortcomings in generality complicates the specification of more sophisticated and abstract rewriting rules.

In this paper, we introduce Ricercar, a general textual description language for reversible logic circuits designed explicitly to support rewriting.

Taking the not gate and the identity gate as primitives, this language allows circuits to be constructed using control gates, sequential composition, and ancillae, through a notion of ancilla scope. We show how the above-mentioned rewriting rules are defined in this language, and extend the rewriting system with five additional rules to introduce and modify ancilla scope. This treatment of ancillae addresses the limitations of the original rewriting system in rewriting circuits with ancillae in the general case.

To set Ricercar on a theoretical foundation, we also define a permutation semantics over symmetric groups and show how the operations over permutations as transposition relate to the semantics of the language.

Keywords

  • Reversible logic
  • Term rewriting
  • Ancillae
  • Circuit equivalence
  • Permutation

M.K. Thomsen—This work was partly funded by the European Commission under the 7th Framework Programme.

M.K. Thomsen—A preliminary version of Ricercar was presented as work-in-progress at 6th Conference on Reversible Computation, 2014.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20860-2_13
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-20860-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdessaied, N., Soeken, M., Thomsen, M.K., Drechsler, R.: Upper bounds for reversible circuits based on Young subgroups. Information Processing Letters 114(6), 282–286 (2014)

    MATH  MathSciNet  CrossRef  Google Scholar 

  2. Bennett, C.H.: Time/Space Trade-Offs for reversible computation. SIAM Journal on Computing 18(4), 766–776 (1989)

    MATH  MathSciNet  CrossRef  Google Scholar 

  3. Buhrman, H., Tromp, J., Vitányi, P.: Time and space bounds for reversible simulation. Journal of Physics A: Mathematical and General 34(35), 6821–6830 (2001)

    MATH  MathSciNet  CrossRef  Google Scholar 

  4. Chan, T., Munro, J.I., Raman, V.: Selection and sorting in the “restore” model. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 995–1004 (2014)

    Google Scholar 

  5. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184v1 (2005)

  6. De Vos, A., Rentergem, Y.V.: Reversible computing: from mathematical group theory to electronical circuit experiment. In: Proceedings of the Second Conference on Computing Frontiers, 2005, Ischia, Italy, May 4–6, 2005, pp. 35–44 (2005)

    Google Scholar 

  7. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder. arXiv:quant-ph/0406142 (2008)

  8. Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.: An introduction to quantum programming in quipper. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 110–124. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  9. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. In: Conference on Programming Language Design and Implementation, PLDI 2013, pp. 333–342. ACM (2013)

    Google Scholar 

  10. Jordan, S.P.: Strong equivalence of reversible circuits is \({\sf coNP}\)-complete. Quantum Information & Computation 14(15–16), 1302–1307 (2014)

    MathSciNet  Google Scholar 

  11. Kaarsgaard, R.: Towards a propositional logic for reversible logic circuits. In: de Haan, R. (ed.) Proceedings of the ESSLLI 2014 Student Session, pp. 33–41 (2014). http://www.kr.tuwien.ac.at/drm/dehaan/stus2014/proceedings.pdf

  12. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, DAC, pp. 318–323 (2003)

    Google Scholar 

  13. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 22(6), 710–722 (2003)

    CrossRef  Google Scholar 

  14. Soeken, M., Thomsen, M.K.: White dots do matter: rewriting reversible logic circuits. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 196–208. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  15. Soeken, M., Thomsen, M.K., Dueck, G.W., Miller, D.M.: Self-inverse functions and palindromic circuits. arXiv 1502.05825 (2015)

    Google Scholar 

  16. Storme, L., De Vos, A., Jacobs, G.: Group theoretical aspects of reversible logic gates. J. UCS 5(5), 307–321 (1999)

    MATH  Google Scholar 

  17. Takahashi, Y., Kunihiro, N.: A fast quantum circuit for addition with few qubits. Quantum Info. Comput. 8(6), 636–649 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Thomsen, M.K.: Describing and optimising reversible logic using a functional language. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 148–163. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  19. Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders. Parallel Processing Letters 19(1), 205–222 (2009)

    MathSciNet  CrossRef  Google Scholar 

  20. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Physical Review A 54(1), 147–153 (1996)

    MathSciNet  CrossRef  Google Scholar 

  21. Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and gate costs in the synthesis of reversible logic. Integration, the VLSI Journal 47(2), 284–294 (2014)

    CrossRef  Google Scholar 

  22. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: Conference on Computing Frontiers, CF, pp. 43–54. ACM Press (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kirkedal Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Thomsen, M.K., Kaarsgaard, R., Soeken, M. (2015). Ricercar: A Language for Describing and Rewriting Reversible Circuits with Ancillae and Its Permutation Semantics. In: Krivine, J., Stefani, JB. (eds) Reversible Computation. RC 2015. Lecture Notes in Computer Science(), vol 9138. Springer, Cham. https://doi.org/10.1007/978-3-319-20860-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20860-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20859-6

  • Online ISBN: 978-3-319-20860-2

  • eBook Packages: Computer ScienceComputer Science (R0)