Skip to main content

Anticoagulation for Venous Thromboembolism: Selecting the Optimal Parenteral and Oral Anticoagulant Regimen

  • Chapter
Handbook for Venous Thromboembolism

Abstract

Prompt therapeutic-level anticoagulation is the cornerstone of treatment for venous thromboembolism (VTE). Options for anticoagulation in VTE include unfractionated heparin, low-molecular-weight heparin, fondaparinux, argatroban, bivalirudin, warfarin, and the non-vitamin K oral anticoagulants (NOACs) rivaroxaban, dabigatran, apixaban, and edoxaban. The NOACs represent a major advance in anticoagulation for VTE with superior safety and equivalent efficacy compared with warfarin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369:799–808.

    Article  CAS  PubMed  Google Scholar 

  2. Bauersachs R, Berkowitz SD, Brenner B, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363:2499–510.

    Article  CAS  PubMed  Google Scholar 

  3. Buller HR, Decousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369:1406–15.

    Article  PubMed  Google Scholar 

  4. Buller HR, Prins MH, Lensin AW, et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med. 2012;366:1287–97.

    Article  PubMed  Google Scholar 

  5. Schulman S, Kakkar AK, Goldhaber SZ, et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation. 2014;129:764–72.

    Article  CAS  PubMed  Google Scholar 

  6. Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361:2342–52.

    Article  CAS  PubMed  Google Scholar 

  7. Raschke R, Hirsh J, Guidry JR. Suboptimal monitoring and dosing of unfractionated heparin in comparative studies with low-molecular-weight heparin. Ann Intern Med. 2003;138:720–3.

    Article  CAS  PubMed  Google Scholar 

  8. Raschke RA, Reilly BM, Guidry JR, Fontana JR, Srinivas S. The weight-based heparin dosing nomogram compared with a “standard care” nomogram. A randomized controlled trial. Ann Intern Med. 1993;119:874–81.

    Article  CAS  PubMed  Google Scholar 

  9. Piazza G, Goldhaber SZ. Fibrinolysis for acute pulmonary embolism. Vasc Med. 2010;15:419–28.

    Article  PubMed  Google Scholar 

  10. Breddin HK, Hach-Wunderle V, Nakov R, Kakkar VV. Effects of a low-molecular-weight heparin on thrombus regression and recurrent thromboembolism in patients with deep-vein thrombosis. N Engl J Med. 2001;344:626–31.

    Article  CAS  PubMed  Google Scholar 

  11. Gould MK, Dembitzer AD, Doyle RL, Hastie TJ, Garber AM. Low-molecular-weight heparins compared with unfractionated heparin for treatment of acute deep venous thrombosis. A meta-analysis of randomized, controlled trials. Ann Intern Med. 1999;130:800–9.

    Article  CAS  PubMed  Google Scholar 

  12. Merli G, Spiro TE, Olsson CG, et al. Subcutaneous enoxaparin once or twice daily compared with intravenous unfractionated heparin for treatment of venous thromboembolic disease. Ann Intern Med. 2001;134:191–202.

    Article  CAS  PubMed  Google Scholar 

  13. Low-molecular-weight heparin in the treatment of patients with venous thromboembolism. The Columbus Investigators. N Engl J Med. 1997;337:657–62.

    Google Scholar 

  14. Simonneau G, Sors H, Charbonnier B, et al. A comparison of low-molecular-weight heparin with unfractionated heparin for acute pulmonary embolism. The THESEE Study Group. Tinzaparine ou Heparine Standard: Evaluations dans l’Embolie Pulmonaire. N Engl J Med. 1997;337:663–9.

    Article  CAS  PubMed  Google Scholar 

  15. Jaff MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011;123:1788–830.

    Article  PubMed  Google Scholar 

  16. Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e419S–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lee AY, Levine MN, Baker RI, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349:146–53.

    Article  CAS  PubMed  Google Scholar 

  18. Bounameaux H, de Moerloose P. Is laboratory monitoring of low-molecular-weight heparin therapy necessary? No. J Thromb Haemost. 2004;2:551–4.

    Article  CAS  PubMed  Google Scholar 

  19. Harenberg J. Is laboratory monitoring of low-molecular-weight heparin therapy necessary? Yes. J Thromb Haemost. 2004;2:547–50.

    Article  CAS  PubMed  Google Scholar 

  20. Warkentin TE, Greinacher A, Koster A, Lincoff AM, American College of Chest P. Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133:340S–80.

    Article  CAS  PubMed  Google Scholar 

  21. Rice L, Attisha WK, Drexler A, Francis JL. Delayed-onset heparin-induced thrombocytopenia. Ann Intern Med. 2002;136:210–5.

    Article  PubMed  Google Scholar 

  22. Baroletti S, Hurwitz S, Conti NA, Fanikos J, Piazza G, Goldhaber SZ. Thrombosis in suspected heparin-induced thrombocytopenia occurs more often with high antibody levels. Am J Med. 2012;125:44–9.

    Article  CAS  PubMed  Google Scholar 

  23. Buller HR, Davidson BL, Decousus H, et al. Fondaparinux or enoxaparin for the initial treatment of symptomatic deep venous thrombosis: a randomized trial. Ann Intern Med. 2004;140:867–73.

    Article  PubMed  Google Scholar 

  24. Buller HR, Davidson BL, Decousus H, et al. Subcutaneous fondaparinux versus intravenous unfractionated heparin in the initial treatment of pulmonary embolism. N Engl J Med. 2003;349:1695–702.

    Article  CAS  PubMed  Google Scholar 

  25. Decousus H, Prandoni P, Mismetti P, et al. Fondaparinux for the treatment of superficial-vein thrombosis in the legs. N Engl J Med. 2010;363:1222–32.

    Article  CAS  PubMed  Google Scholar 

  26. Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287:1690–8.

    Article  CAS  PubMed  Google Scholar 

  27. Joffe HV, Xu R, Johnson FB, Longtine J, Kucher N, Goldhaber SZ. Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb Haemost. 2004;91:1123–8.

    CAS  PubMed  Google Scholar 

  28. Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.

    Article  CAS  PubMed  Google Scholar 

  29. Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369:2283–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pirmohamed M, Burnside G, Eriksson N, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369:2294–303.

    Article  CAS  PubMed  Google Scholar 

  31. Verhoef TI, Ragia G, de Boer A, et al. A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. N Engl J Med. 2013;369:2304–12.

    Article  CAS  PubMed  Google Scholar 

  32. Heneghan C, Ward A, Perera R, et al. Self-monitoring of oral anticoagulation: systematic review and meta-analysis of individual patient data. Lancet. 2012;379:322–34.

    Article  PubMed  Google Scholar 

  33. Garcia DA, Crowther MA. Reversal of warfarin: case-based practice recommendations. Circulation. 2012;125:2944–7.

    Article  PubMed  Google Scholar 

  34. Deveras RA, Kessler CM. Reversal of warfarin-induced excessive anticoagulation with recombinant human factor VIIa concentrate. Ann Intern Med. 2002;137:884–8.

    Article  CAS  PubMed  Google Scholar 

  35. Siegal DM, Crowther MA. Acute management of bleeding in patients on novel oral anticoagulants. Eur Heart J. 2013;34:489–98b.

    Article  CAS  PubMed  Google Scholar 

  36. Pollack CV, Reilly PA, Eikelboom J, et al. Idarucizumab for Dabigatran Reversal. N Engl J Med. 2015 Jun 22. [Epub ahead of print].

    Google Scholar 

  37. Lu G, DeGuzman FR, Hollenbach SJ, et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med. 2013;19:446–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piazza, G., Hohlfelder, B., Goldhaber, S.Z. (2015). Anticoagulation for Venous Thromboembolism: Selecting the Optimal Parenteral and Oral Anticoagulant Regimen. In: Handbook for Venous Thromboembolism. Springer, Cham. https://doi.org/10.1007/978-3-319-20843-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20843-5_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20842-8

  • Online ISBN: 978-3-319-20843-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics