Skip to main content

Antibody Repertoires in Fish

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 57))

Abstract

As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.

What attracted me to immunology was that the whole thing seemed to revolve around a very simple experiment: take two different antibody molecules and compare their primary sequences. The secret of antibody diversity would emerge from that. Fortunately at the time I was sufficiently ignorant of the subject not to realize how naive I was being.

César Milstein (1984)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson MK, Shamblott MJ, Litman RT, Litman GW (1995) Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity. J Exp Med 182:109–119

    Article  CAS  PubMed  Google Scholar 

  • Anderson MK, Strong SJ, Litman RT, Luer CA, Amemiya CT, Rast JP, Litman GW (1999) A long form of the skate IgX gene exhibits a striking resemblance to the new shark IgW and IgNARC genes. Immunogenetics 49:56–67

    Article  CAS  PubMed  Google Scholar 

  • Anthony RM, Wermeling F, Ravetch JV (2012) Novel roles for the IgG Fc glycan. Ann N Y Acad Sci 1253:170–180

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Wang T, Guo Y, Zhao Z, Li N, Zhao Y (2010) The immunoglobulin gene loci in the teleost Gasterosteus aculeatus. Fish Shellfish Immunol 28:40–48

    Article  CAS  PubMed  Google Scholar 

  • Barreto VM, Magor BG (2011) Activation-induced cytidine deaminase structure and functions: a species comparative view. Dev Comp Immunol 35:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Barreto VM, Pan-Hammarstrom Q, Zhao Y, Hammarstrom L, Misulovin Z, Nussenzweig MC (2005) AID from bony fish catalyzes class switch recombination. J Exp Med 202:733–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benedict CL, Kearney JF (1999) Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 10:607–617

    Article  CAS  PubMed  Google Scholar 

  • Bengtén E, Wilson M, Miller N, Clem LW, Pilström L, Warr GW (2000) Immunoglobulin isotypes: structure, function, and genetics. Curr Top Microbiol Immunol 248:189–219

    PubMed  Google Scholar 

  • Bengten E, Quiniou SM, Stuge TB, Katagiri T, Miller NW, Clem LW, Warr GW, Wilson M (2002) The IgH locus of the channel catfish, Ictalurus punctatus, contains multiple constant region gene sequences: different genes encode heavy chains of membrane and secreted IgD. J Immunol 169:2488–2497

    Article  CAS  PubMed  Google Scholar 

  • Bengten E, Clem LW, Miller NW, Warr GW, Wilson M (2006a) Channel catfish immunoglobulins: repertoire and expression. Dev Comp Immunol 30:77–92

    Article  CAS  PubMed  Google Scholar 

  • Bengten E, Quiniou S, Hikima J, Waldbieser G, Warr GW, Miller NW, Wilson M (2006b) Structure of the catfish IGH locus: analysis of the region including the single functional IGHM gene. Immunogenetics 58:831–844

    Article  CAS  PubMed  Google Scholar 

  • Berstein RM, Schluter SF, Shen S, Marchalonis JJ (1996) A new high molecular weight immunoglobulin class from the carcharhine shark: implications for the properties of the primordial immunoglobulin. Proc Natl Acad Sci USA 93:3289–3293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boshra H, Li J, Sunyer JO (2006) Recent advances on the complement system of teleost fish. Fish Shellfish Immunol 20:239–262

    Article  CAS  PubMed  Google Scholar 

  • Brady BL, Steinel NC, Bassing CH (2010) Antigen receptor allelic exclusion: an update and reappraisal. J Immunol 185:3801–3808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bromage ES, Kaattari IM, Zwollo P, Kaattari SL (2004) Plasmablast and plasma cell production and distribution in trout immune tissues. J Immunol 173:7317–7323

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Kaattari IM, Kaattari SL (2006) Two new Ig VH gene families in Oncorhynchus mykiss. Immunogenetics 58:933–936

    Article  CAS  PubMed  Google Scholar 

  • Butler JE (2006) Special Issue: Antibody repertoire development. Dev Comp Immunol 30:1–247

    Article  Google Scholar 

  • Castro CD, Ohta Y, Dooley H, Flajnik MF (2013) Noncoordinate expression of J-chain and Blimp-1 define nurse shark plasma cell populations during ontogeny. Eur J Immunol 43:3061–3075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castro R, Bromage E, Abos B, Pignatelli J, Gonzalez Granja A, Luque A, Tafalla C (2014) CCR7 is mainly expressed in teleost gills, where it defines an IgD + IgM-B lymphocyte subset. J Immunol 192:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Xu W, Wilson M, He B, Miller N, Bengten E, Edholm E-S, Santini P, Rath P, Chiu A, Cattalini M, Litzman J, Bussel J, Huang B, Meini A, Riesbeck K, Cunningham-Rundles C, Plebani A, Cerutti A (2009) Immunoglobulin D enhances immune surveillance by activation antimicrobial, pro-inflammatory and B cell-stimulating programs in basophils. Nat Immunol 10(8):889–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clem LW (1971) Phylogeny of immunoglobulin structure and function. IV. Immunoglobulins of the giant grouper, Epinephelus itaira. J Biol Chem 246:9–15

    CAS  PubMed  Google Scholar 

  • Clem LW, Leslie GA (1971) Production of 19S IgM antibodies with restricted heterogeneity from sharks. Proc Natl Acad Sci USA 68:139–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clem LW, Small PA Jr (1967) Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark. J Exp Med 125:893–920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clem IW, De Boutaud F, Sigel MM (1967) Phylogeny of immunoglobulin structure and function. II. Immunoglobulins of the nurse shark. J Immunol 99:1226–1235

    CAS  PubMed  Google Scholar 

  • Criscitiello MF (2014) What the shark immune system can and cannot provide for the expanding design landscape of immunotherapy. Expert Opin Drug Discov 9:725–739

    Article  CAS  PubMed  Google Scholar 

  • Criscitiello MF, Flajnik MF (2007) Four primordial immunoglobulin light chain isotypes, including lambda and kappa, identified in the most primitive living jawed vertebrates. Eur J Immunol 37:2683–2694

    Article  CAS  PubMed  Google Scholar 

  • Criscitiello MF, Saltis M, Flajnik MF (2006) An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks. Proc Natl Acad Sci USA 103:5036–5041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crouch K, Smith LE, Williams R, Cao W, Lee M, Jensen A, Dooley H (2013) Humoral immune response of the small-spotted catshark, Scyliorhinus canicula. Fish Shellfish Immunol 34:1158–1169

    Article  CAS  PubMed  Google Scholar 

  • Daggfeldt A, Bengtén E, Pilström L (1993) A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38:199–209

    Article  CAS  PubMed  Google Scholar 

  • Danilova N, Bussmann J, Jekosch K, Steiner LA (2005) The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 6:295–302

    Article  CAS  PubMed  Google Scholar 

  • Diaz M, Greenberg AS, Flajnik MF (1998) Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci USA 95:14343–14348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz M, Velez J, Singh M, Cerny J, Flajnik MF (1999) Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol 11:825–833

    Article  CAS  PubMed  Google Scholar 

  • Diaz M, Stanfield RL, Greenberg AS, Flajnik MF (2002) Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 54:501–512

    Article  CAS  PubMed  Google Scholar 

  • Dickerson HW, Findly RC (2014) Immunity to Ichthyophthirius infections in fish: a synopsis. Dev Comp Immunol 43:290–299

    Article  CAS  PubMed  Google Scholar 

  • Dooley H, Flajnik MF (2005) Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur J Immunol 35:936–945

    Article  CAS  PubMed  Google Scholar 

  • Dooley H, Flajnik MF (2006) Antibody epertoire development in cartilaginous fish. Dev Comp Immunol 30:43–56

    Article  CAS  PubMed  Google Scholar 

  • Edholm ES, Wilson M, Sahoo M, Miller NW, Pilström L, Wermenstam NE, Bengtén E (2009) Identification of Igsigma and Iglambda in channel catfish, Ictalurus punctatus, and Iglambda in Atlantic cod, Gadus morhua. Immunogenetics 61:353–370

    Article  CAS  PubMed  Google Scholar 

  • Edholm ES, Bengten E, Stafford JL, Sahoo M, Taylor EB, Miller NW, Wilson M (2010) Identification of two IgD+ B cell populations in channel catfish, Ictalurus punctatus. J Immunol 185:4082–4094

    Article  CAS  PubMed  Google Scholar 

  • Edholm ES, Bengten E, Wilson M (2011a) Insights into the function of IgD. Dev Comp Immunol 35:1309–1316

    Article  CAS  PubMed  Google Scholar 

  • Edholm ES, Wilson M, Bengten E (2011b) Immunoglobulin light (IgL) chains in ectothermic vertebrates. Dev Comp Immunol 35:906–915

    Article  CAS  PubMed  Google Scholar 

  • Fidler JE, Clem LW, Small PA Jr (1969) Immunoglobulin synthesis in neonatal nurse sharks (Ginglymostoma cirratum). Comp Biochem Physiol 31:365–371

    Article  CAS  PubMed  Google Scholar 

  • Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P (2013) The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 4:28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Findly RC, Zhao X, Noe J, Camus AC, Dickerson HW (2013) B cell memory following infection and challenge of channel catfish with Ichthyophthirius multifiliis. Dev Comp Immunol 39:302–311

    Article  PubMed  CAS  Google Scholar 

  • Flajnik M, Du Pasquier L (2013) Evolution of the immune system. In: Paul WE (ed) Fundamental immunology. Lippincott Williams & Wilkins, Philadelphia, PA, pp 67–128

    Google Scholar 

  • Flajnik MF, Rumfelt LL (2000) The immune system of cartilaginous fish. Curr Top Microbiol Immunol 248:249–270

    CAS  PubMed  Google Scholar 

  • Fleurant M, Changchien L, Chen CT, Flajnik MF, Hsu E (2004) Shark Ig light chain junctions are as diverse as in heavy chains. J Immunol 173:5574–5582

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Zhang H, Tan E, Watabe S, Asakawa S (2015) Characterization of the torafugu (Takifugu rubripes) immunoglobulin heavy chain gene locus. Immunogenetics 67:179–193

    Article  CAS  PubMed  Google Scholar 

  • Gambon-Deza F, Sanchez-Espinel C, Magadan-Mompo S (2010) Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes. Dev Comp Immunol 34:114–122

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari SH, Lobb CJ (1993) Structure and genomic organization of immunoglobulin light chain in the channel catfish. An unusual genomic organizational pattern of segmental genes. J Immunol 151:6900–6912

    CAS  PubMed  Google Scholar 

  • Ghaffari SH, Lobb CJ (1997) Structure and genomic organization of a second class of immunoglobulin light chain genes in the channel catfish. J Immunol 159:250–258

    CAS  PubMed  Google Scholar 

  • Gomez D, Sunyer JO, Salinas I (2013) The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol 35:1729–1739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez R, Charlemagne J, Mahana W, Avrameas S (1988) Specificity of natural serum antibodies present in phylogenetically distinct fish species. Immunology 63:31–36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Greenberg AS, Steiner L, Kasahara M, Flajnik MF (1993) Isolation of a shark immnoglobulin light chain cDNA clone encoding a protein resembling mammalian k light chains: implications for the evolution of light chains. Proc Natl Acad Sci USA 90:10603–10607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173

    Article  CAS  PubMed  Google Scholar 

  • Greenberg AS, Hughes AL, Guo J, Avila D, McKinney EC, Flajnik MF (1996) A novel “chimeric” antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur J Immunol 26:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Hansen JD, Landis ED, Phillips RB (2005) Discovery of a unique Ig heavy chain isotype in rainbow trout: implications for a novel B-cell developmental pathway in teleost fish. Proc Natl Acad Sci USA 102:6919–6924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harding FA, Amemiya CT, Litman RT, Cohen N, Litman GW (1990) Two distinct immunoglobulin heavy chain isotypes in a primitive, cartilaginous fish, Raja erinacea. Nucl Acid Res 18:6369–6376

    Article  CAS  Google Scholar 

  • Haynes L, Fuller L, McKinney EC (1988) Fc receptor for shark IgM. Dev Comp Immunol 12:561–571

    Article  CAS  PubMed  Google Scholar 

  • Hikima J, Jung TS, Aoki T (2011) Immunoglobulin genes and their transcriptional control in teleosts. Dev Comp Immunol 35:924–936

    Article  CAS  PubMed  Google Scholar 

  • Hinds KR, Litman GW (1986) Major reorganization of immunoglobulin VH-segmental elements during vertebrate evolution. Nature 320:546–549

    Article  CAS  PubMed  Google Scholar 

  • Hohman VS, Schluter SF, Marchalonis JJ (1992) Complete sequence of a cDNA clone specifying sanbar shark immunoglobulin light chain: gene organisation and implications for the evolution of light chains. Proc Natl Acad Sci USA 89:276–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hohman VS, Schuchman DB, Schluter SF, Marchalonis JJ (1993) Genomic clone for sandbar shark l light chain: Generation of diversity in the absence of gene rearrangement. Proc Natl Acad Sci USA 90:9882–9886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hohman VS, Schluter SF, Marchalonis JJ (1995) Diversity of Ig light chain clusters in the sandbar shark (Carcharhinus plumbeus). J Immunol 155:3922–3928

    CAS  PubMed  Google Scholar 

  • Honda Y, Kondo H, Caipang CM, Hirono I, Aoki T (2010) cDNA cloning of the immunoglobulin heavy chain genes in banded houndshark Triakis scyllium. Fish Shellfish Immunol 29:854–861

    Article  CAS  PubMed  Google Scholar 

  • Hsu E, Criscitiello MF (2006) Diverse immunoglobulin light chain organizations in fish retain potential to revise B cell receptor specificities. J Immunol 177:2452–2462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu E, Pulham N, Rumfelt LL, Flajnik MF (2006) The plasticity of immunoglobulin gene systems in evolution. Immunol Rev 210:8–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang N, Weinstein JA, Penland L, White RA III, Fisher DS, Quake SR (2011) Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc Natl Acad Sci USA 108:5348–5353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones JC, Ghaffari SH, Lobb CJ (2004) Patterns of gene divergence and VL promoter activity in immunoglobulin light chain clusters of the channel catfish. Immunogenetics 56:448–461

    Article  CAS  PubMed  Google Scholar 

  • Kaattari SL, Zhang HL, Khor IW, Kaattari IM, Shapiro DA (2002) Affinity maturation in trout: clonal dominance of high affinity antibodies late in the immune response. Dev Comp Immunol 26:191–200

    Article  CAS  PubMed  Google Scholar 

  • Klapper DG, Clem LW, Small PA Jr (1971) Proteolytic fragmentation of elasmobranch immunoglobulins. Biochemistry 10:645–652

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Tomonaga S, Kajii T (1984) A second class of immunoglobulin other than IgM present in the serum of a cartilaginous fish, the skate Raja kenojei: isolation and characterization. Mol Immunol 21:397–404

    Article  CAS  PubMed  Google Scholar 

  • Kokubu F, Hinds K, Litman R, Shamblott MJ, Litman GW (1987) Extensive families of constant region genes in a phylogenetically primitive vertebrate indicate an additional level of immunoglobulin complexity. Proc Natl Acad Sci USA 84:5868–5872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kokubu F, Litman R, Shamblott MJ, Hinds K, Litman GW (1988) Diverse organisation of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J 7:3413–3422

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kovalenko OV, Olland A, Piche-Nicholas N, Godbole A, King D, Svenson K, Calabro V, Muller MR, Barelle CJ, Somers W, Gill DS, Mosyak L, Tchistiakova L (2013) Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis. J Biol Chem 288:17408–17419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lange MD, Waldbieser GC, Lobb CJ (2009) Patterns of receptor revision in the immunoglobulin heavy chains of a teleost fish. J Immunol 182:5605–5622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SS, Fitch D, Flajnik MF, Hsu E (2000a) Rearrangement of immunoglobulin genes in shark germ cells. J Exp Med 191:1637–1648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SS, Greenberg A, Hsu E (2000b) Evolution and somatic diversification of immunoglobulin light chains. Curr Top Microbiol Immunol 248:285–300

    CAS  PubMed  Google Scholar 

  • Lee SS, Tranchina D, Ohta Y, Flajnik MF, Hsu E (2002) Hypermutation in shark immunoglobulin light chain genes results in contiguous substitutions. Immunity 16:571–582

    Article  CAS  PubMed  Google Scholar 

  • Lee V, Huang JL, Lui MF, Malecek K, Ohta Y, Mooers A, Hsu E (2008) The evolution of multiple isotypic IgM heavy chain genes in the shark. J Immunol 180:7461–7470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leslie GA, Clem LW (1970) Reactivity of normal shark immunoglobulins with nitrophenyl ligands. J Immunol 105:1547–1552

    CAS  PubMed  Google Scholar 

  • Lewis KL, Del Cid N, Traver D (2014) Perspectives on antigen presenting cells in zebrafish. Dev Comp Immunol 46:63–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Litman GW, Berger L, Murphy K, Litman R, Hinds K, Erickson BW (1985) Immunoglobulin VH-gene structure and diversity in Heterodontus, a phylogenetically primitive shark. Proc Natl Acad Sci USA 82:2082–2086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Litman GW, Rast JP, Shamblott MJ, Haire RN, Hulst M, Roess W, Litman R, Hinds-Frey KR, Zilch A, Amemiya CT (1993) Phylogenetic diversification of immunoglobulin genes and antibody repertoire. Mol Biol Evol 10:60–72

    CAS  PubMed  Google Scholar 

  • Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17:109–147

    Article  CAS  PubMed  Google Scholar 

  • Lobb CJ, Clem LW (1981a) Phylogeny of immunoglobulin structure and function - X. Humoral immunoglobulins of the sheephead, Archosargus probatocephalus. Dev Comp Immunol 5:271–282

    Article  CAS  PubMed  Google Scholar 

  • Lobb CJ, Clem LW (1981b) Phylogeny of immunoglobulin structure and function – XI. Secretory immunoglobulins in the cutaneous mucus of the sheephead, Archosargus probatocephalus. Dev Comp Immunol 5:587–596

    Article  CAS  PubMed  Google Scholar 

  • Lobb CJ, Hayman JR (1989) Activation of complement by different immunoglobulin heavy chain isotypes of the channel catfish (Ictalurus punctatus). Mol Immunol 26:457–465

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M, Bengten E, Strömberg S, Pilström L (1996) Ig light chain gene in the Siberian sturgeon (Acipenser baeri). J Immunol 157:2031–2038

    CAS  PubMed  Google Scholar 

  • Lutz C, Ledermann B, Kosco-Vilbois MH, Ochsenbein AF, Zinkernagel RM, Kohler G, Brombacher F (1998) IgD can largely substitute for loss of IgM function in B cells. Nature 393:797–801

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Ye J, Kaattari SL (2013) Differential compartmentalization of memory B cells versus plasma cells in salmonid fish. Eur J Immunol 43:360–370

    Article  CAS  PubMed  Google Scholar 

  • Magadan-Mompo S, Sanchez-Espinel C, Gambon-Deza F (2011) Immunoglobulin heavy chains in medaka (Oryzias latipes). BMC Evol Biol 11:165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magadan S, Sunyer OJ, Boudinot P (2015) Unique features of fish immune repertoires: particularities of the adaptive immunity within the largest group of vertebrates. In: Hsu E, Du Pasquier L (eds) Pathogen-host interactions: antigenic variation vs. somatic adaptations. Springer, New York

    Google Scholar 

  • Magnadottir B, Gudmundsdottir S, Gudmundsdottir BK, Helgason S (2009) Natural antibodies of cod (Gadus morhua L.): specificity, activity and affinity. Comp Biochem Physiol B Biochem Mol Biol 154:309–316

    Article  PubMed  CAS  Google Scholar 

  • Magor KE (2011) Immunoglobulin genetics and antibody responses to influenza in ducks. Dev Comp Immunol 35:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Makesh M, Sudheesh PS, Cain KD (2015) Systemic and mucosal immune response of rainbow trout to immunization with an attenuated Flavobacterium psychrophilum vaccine strain by different routes. Fish Shellfish Immunol 44:156–163

    Article  CAS  PubMed  Google Scholar 

  • Malecek K, Brandman J, Brodsky JE, Ohta Y, Flajnik MF, Hsu E (2005) Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark. J Immunol 175:8105–8115

    Article  CAS  PubMed  Google Scholar 

  • Malecek K, Lee V, Feng W, Huang JL, Flajnik MF, Ohta Y, Hsu E (2008) Immunoglobulin heavy chain exclusion in the shark. PLoS Biol 6, e157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marchalonis J, Edelman GM (1965) Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus canis). J Exp Med 122:601–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchalonis J, Edelman GM (1966) Polypeptide Chains of Immunoglobulins from the Smooth Dogfish (Mustela canis). Science 154:1567–1568

    Article  CAS  PubMed  Google Scholar 

  • Marianes AE, Zimmerman AM (2011) Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology 132:240–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mashoof S, Pohlenz C, Chen PL, Deiss TC, Gatlin D III, Buentello A, Criscitiello MF (2014) Expressed IgH mu and tau transcripts share diversity segment in ranched Thunnus orientalis. Dev Comp Immunol 43:76–86

    Article  CAS  PubMed  Google Scholar 

  • McCumber LJ, Clem LW (1976) A comparative study of J chain structure and stoichiometry in human and nurse shark IgM. Immunochemistry 13:479–484

    Article  CAS  PubMed  Google Scholar 

  • McKinney EC, Flajnik MF (1997) IgM-mediated opsonization and cytotoxicity in the shark. J Leukoc Biol 61:141–146

    CAS  PubMed  Google Scholar 

  • Miracle AL, Anderson MK, Litman RT, Walsh CJ, Luer CA, Rothenberg EV, Litman GW (2001) Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 13:567–580

    Article  CAS  PubMed  Google Scholar 

  • Nemazee D, Weigert M (2000) Revising B cell receptors. J Exp Med 191:1813–1817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533

    Article  CAS  PubMed  Google Scholar 

  • Nitschke L, Kosco MH, Kohler G, Lamers MC (1993) Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens. Proc Natl Acad Sci USA 90:1887–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel RM (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Flajnik M (2006) IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates. Proc Natl Acad Sci USA 103:10723–10728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ota T, Rast JP, Litman GW, Amemiya CT (2003) Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox. Proc Natl Acad Sci USA 100:2501–2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Page DM, Wittamer V, Bertrand JY, Lewis KL, Pratt DN, Delgado N, Schale SE, McGue C, Jacobsen BH, Doty A, Pao Y, Yang H, Chi NC, Magor BG, Traver D (2013) An evolutionarily conserved program of B-cell development and activation in zebrafish. Blood 122:e1–e11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panda S, Ding JL (2015) Natural antibodies bridge innate and adaptive immunity. J Immunol 194:13–20

    Article  CAS  PubMed  Google Scholar 

  • Partula S, Schwager J, Timmusk S, Pilström L, Charlemagne J (1996) A second immunoglobulin light chain isotype in the rainbow trout. Immunogenetics 45:44–51

    Article  CAS  PubMed  Google Scholar 

  • Pettinello R, Dooley H (2014) The immunoglobulins of cold-blooded vertebrates. Biomolecules 4:1045–1069

    Article  PubMed Central  PubMed  Google Scholar 

  • Pilstrom L, Warr GW, Stromberg S (2005) Why is the antibody response of Atlantic cod so poor? The search for a genetic explanation. Fish Sci 71:961–971

    Article  Google Scholar 

  • Quiniou SM, Wilson M, Boudinot P (2011) Processing of fish Ig heavy chain transcripts: diverse splicing patterns and unusual nonsense mediated decay. Dev Comp Immunol 35:949–958

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gomez F, Greene W, Rego K, Hansen JD, Costa G, Kataria P, Bromage ES (2012) Discovery and characterization of secretory IgD in rainbow trout: secretory IgD is produced through a novel splicing mechanism. J Immunol 188:1341–1349

    Article  CAS  PubMed  Google Scholar 

  • Rast JP, Anderson MK, Ota T, Litman RT, Margittai M, Shamblott MJ, Litman GW (1994) Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics 40:83–99

    Article  CAS  PubMed  Google Scholar 

  • Rast JP, Amemiya CT, Litman RT, Strong SJ, Litman GW (1998) Distinct patterns of IgH structure and organization in a divergent lineage of chrondrichthyan fishes. Immunogenetics 47:234–245

    Article  CAS  PubMed  Google Scholar 

  • Rock EP, Sibbald PR, Davis MM, Chien YH (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328

    Article  CAS  PubMed  Google Scholar 

  • Roes J, Rajewsky K (1993) Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells. J Exp Med 177:45–55

    Article  CAS  PubMed  Google Scholar 

  • Roman T, Andersson E, Bengten E, Hansen J, Kaattari S, Pilström L, Charlemagne J, Matsunaga T (1996) Unified nomenclature of Ig VH genes in rainbow trout (Oncorhynchus mykiss): definition of eleven VH families. Immunogenetics 43:325–326

    Article  CAS  PubMed  Google Scholar 

  • Rombout JH, Yang G, Kiron V (2014) Adaptive immune responses at mucosal surfaces of teleost fish. Fish Shellfish Immunol 40:634–643

    Article  CAS  PubMed  Google Scholar 

  • Roux KH, Greenberg AS, Greene L, Strelets L, Avila D, McKinney EC, Flajnik MF (1998) Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc Natl Acad Sci USA 95:11804–11809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rumfelt LL, Avila D, Diaz M, Bartl S, McKinney EC, Flajnik MF (2001) A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proc Natl Acad Sci USA 98:1775–1780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rumfelt LL, McKinney EC, Taylor E, Flajnik MF (2002) The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 56:130–148

    Article  CAS  PubMed  Google Scholar 

  • Rumfelt LL, Diaz M, Lohr RL, Mochon E, Flajnik MF (2004a) Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish. J Immunol 173:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Rumfelt LL, Lohr RL, Dooley H, Flajnik MF (2004b) Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark. BMC Immunol 5:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Saada R, Weinberger M, Shahaf G, Mehr R (2007) Models for antigen receptor gene rearrangement: CDR3 length. Immunol Cell Biol 85:323–332

    Article  CAS  PubMed  Google Scholar 

  • Saha NR, Ota T, Litman GW, Hansen J, Parra Z, Hsu E, Buonocore F, Canapa A, Cheng JF, Amemiya CT (2014) Genome complexity in the coelacanth is reflected in its adaptive immune system. J Exp Zool B Mol Dev Evol 322:438–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sahoo M, Edholm ES, Stafford JL, Bengten E, Miller NW, Wilson M (2008) B cell receptor accessory molecules in the channel catfish, Ictalurus punctatus. Dev Comp Immunol 32:1385–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savan R, Aman A, Sato K, Yamaguchi R, Sakai M (2005) Discovery of a new class of immunoglobulin heavy chain from fugu. Eur J Immunol 35:3320–3331

    Article  CAS  PubMed  Google Scholar 

  • Schluter SF, Hohman VS, Edmundson AB, Marchalonis JJ (1989) Evolution of immunoglobulin light chains: cDNA clones specifying sandbar shark constant regions. Proc Natl Acad Sci USA 86:9961–9965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schorpp M, Bialecki M, Diekhoff D, Walderich B, Odenthal J, Maischein HM, Zapata AG, Boehm T (2006) Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J Immunol 177:2463–2476

    Article  CAS  PubMed  Google Scholar 

  • Shamblott MJ, Litman GW (1989a) Complete nucleotide sequence of primitive vertebrate immunoglobulin light chain genes. Proc Natl Acad Sci USA 86:4684–4688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shamblott MJ, Litman GW (1989b) Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization. EMBO J 8:3733–3739

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen SX, Bernstein RM, Schluter SF, Marchalonis JJ (1996) Heavy-chain variable regions in carcharhine sharks: development of a comprehensive model for the evolution of VH domains among the gnathanstomes. Immunol Cell Biol 74:357–364

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Stuge TB, Evenhuis JP, Bengten E, Wilson M, Chinchar VG, Clem LW, Miller NW (2003) Channel catfish NK-like cells are armed with IgM via a putative FcmicroR. Dev Comp Immunol 27:699–714

    Article  CAS  PubMed  Google Scholar 

  • Sledge C, Clem LW, Hood L (1974) Antibody structure: amino terminal sequences of nurse shark light and heavy chains. J Immunol 112:941–948

    CAS  PubMed  Google Scholar 

  • Small PA, Klapper DG, Clem LW (1970) Half-lives, body distribution and lack of interconversion of serum 19S and 7S IgM of sharks. J Immunol 105:29–37

    CAS  PubMed  Google Scholar 

  • Smith SL (1998) Shark complement: an assessment. Immunol Rev 166:67–78

    Article  CAS  PubMed  Google Scholar 

  • Smith LE, Crouch K, Cao W, Muller MR, Wu L, Steven J, Lee M, Liang M, Flajnik MF, Shih HH, Barelle CJ, Paulsen J, Gill DS, Dooley H (2012) Characterization of the immunoglobulin repertoire of the spiny dogfish (Squalus acanthias). Dev Comp Immunol 36:665–679

    Article  CAS  PubMed  Google Scholar 

  • Smith SL, Sim RB, Flajnik MF (2015) Immunobiology of the shark. CRC Press Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Stanfield RL, Dooley H, Flajnik MF, Wilson IA (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305:1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Stanfield RL, Dooley H, Verdino P, Flajnik MF, Wilson IA (2007) Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol 367:358–372

    Article  CAS  PubMed  Google Scholar 

  • Star B, Jentoft S (2012) Why does the immune system of Atlantic cod lack MHC II? Bioessays 34:648–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzen A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjoen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stenvik J, Jorgensen TO (2000) Immunoglobulin D (IgD) of Atlantic cod has a unique structure. Immunogenetics 51:452–461

    Article  CAS  PubMed  Google Scholar 

  • Streltsov VA, Varghese JN, Carmichael JA, Irving RA, Hudson PJ, Nuttall SD (2004) Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proc Natl Acad Sci USA 101:12444–12449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Streltsov VA, Carmichael JA, Nuttall SD (2005) Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype. Protein Sci 14:2901–2909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Y, Liu Z, Li Z, Lian Z, Zhao Y (2012) Phylogenetic conservation of the 3' cryptic recombination signal sequence (3'cRSS) in the VH genes of jawed vertebrates. Front Immunol 3:392

    PubMed Central  PubMed  Google Scholar 

  • Sunyer JO (2013) Fishing for mammalian paradigms in the teleost immune system. Nat Immunol 14:320–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomonaga S, Kobayashi K (1985) A second class of immunoglobulin in the cartilaginous fishes. Dev Comp Immunol 9:797–802

    Article  CAS  PubMed  Google Scholar 

  • Tomonaga S, Kobayashi K, Kajii T, Awaya K (1984) Two populations of immunoglobulin-forming cells in the skate, Raja kenojei: their distribution and characterization. Dev Comp Immunol 8:803–812

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Partula S, Pilström L (2000) Different genomic organization and expression of immunoglobulin light-chain isotypes in the rainbow trout. Immunogenetics 51:905–914

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505:174–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wakae K, Magor BG, Saunders H, Nagaoka H, Kawamura A, Kinoshita K, Honjo T, Muramatsu M (2006) Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID. Int Immunol 18:41–47

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JA, Jiang N, White RA III, Fisher DS, Quake SR (2009) High-throughput sequencing of the zebrafish antibody repertoire. Science 324:807–810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson MR, Ross DA, Miller NW, Clem LW, Middleton DL, Warr GW (1995) Alternate pre-mRNA processing pathways in the production of membrane IgM heavy chains in holostean fish. Dev Comp Immunol 19:165–177

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Bengten E, Miller NW, Clem LW, Du Pasquier L, Warr GW (1997) A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci USA 94:4593–4597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson PC, Wilson K, Liu YJ, Banchereau J, Pascual V, Capra JD (2000) Receptor revision of immunoglobulin heavy chain variable region genes in normal human B lymphocytes. J Exp Med 191:1881–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Z, Parra D, Gomez D, Salinas I, Zhang YA, von Gersdorff Jorgensen L, Heinecke RD, Buchmann K, LaPatra S, Sunyer JO (2013) Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci USA 110:13097–13102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang F, Waldbieser GC, Lobb CJ (2006) The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. J Immunol 176:1655–1667

    Article  CAS  PubMed  Google Scholar 

  • Yasuike M, de Boer J, von Schalburg KR, Cooper GA, McKinnel L, Mesmer A, So S, Davidson WS, Koop BF (2010) Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 11:486

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ye J, Bromage ES, Kaattari SL (2010) The strength of B cell interaction with antigen determines the degree of IgM polymerization. J Immunol 184:844–850

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Bromage E, Kaattari I, Kaattari S (2011a) Transduction of binding affinity by B lymphocytes: a new dimension in immunological regulation. Dev Comp Immunol 35:982–990

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Kaattari I, Kaattari S (2011b) Plasmablasts and plasma cells: reconsidering teleost immune system organization. Dev Comp Immunol 35:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Litman GW (2000) Immune-type diversity in the absence of somatic rearrangement. Curr Top Microbiol Immunol 248:271–282

    CAS  PubMed  Google Scholar 

  • Zhang YA, Salinas I, Li J, Parra D, Bjork S, Xu Z, LaPatra SE, Bartholomew J, Sunyer JO (2010) IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11:827–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang C, Du Pasquier L, Hsu E (2013) Shark IgW C region diversification through RNA processing and isotype switching. J Immunol 191:3410–3418

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Tacchi L, Wei Z, Zhao Y, Salinas I (2014) Intraclass diversification of immunoglobulin heavy chain genes in the African lungfish. Immunogenetics 66:335–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao X, Findly RC, Dickerson HW (2008) Cutaneous antibody-secreting cells and B cells in a teleost fish. Dev Comp Immunol 32:500–508

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Hsu E (2010) Error-prone DNA repair activity during somatic hypermutation in shark B lymphocytes. J Immunol 185:5336–5347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu C, Feng W, Weedon J, Hua P, Stefanov D, Ohta Y, Flajnik MF, Hsu E (2011) The multiple shark Ig H chain genes rearrange and hypermutate autonomously. J Immunol 187:2492–2501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu C, Lee V, Finn A, Senger K, Zarrin AA, Du Pasquier L, Hsu E (2012) Origin of immunoglobulin isotype switching. Curr Biol 22:872–880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu L, Yan Z, Feng M, Peng D, Guo Y, Hu X, Ren L, Sun Y (2014) Identification of sturgeon IgD bridges the evolutionary gap between elasmobranchs and teleosts. Dev Comp Immunol 42:138–147

    Article  CAS  PubMed  Google Scholar 

  • Zielonka S, Empting M, Grzeschik J, Konning D, Barelle CJ, Kolmar H (2015) Structural insights and biomedical potential of IgNAR scaffolds from sharks. MAbs 7:15–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmerman AM, Yeo G, Howe K, Maddox BJ, Steiner LA (2008) Immunoglobulin light chain (IgL) genes in zebrafish: Genomic configurations and inversional rearrangements between (V(L)-J(L)-C(L)) gene clusters. Dev Comp Immunol 32:421–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman AM, Moustafa FM, Romanowski KE, Steiner LA (2011a) Zebrafish immunoglobulin IgD: unusual exon usage and quantitative expression profiles with IgM and IgZ/T heavy chain isotypes. Mol Immunol 48:2220–2223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmerman AM, Romanowski KE, Maddox BJ (2011b) Targeted annotation of immunoglobulin light chain (IgL) genes in zebrafish from BAC clones reveals kappa-like recombining/deleting elements within IgL constant regions. Fish Shellfish Immunol 31:697–703

    Article  CAS  PubMed  Google Scholar 

  • Zwollo P, Cole S, Bromage E, Kaattari S (2005) B cell heterogeneity in the teleost kidney: evidence for a maturation gradient from anterior to posterior kidney. J Immunol 174:6608–6616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US Department of Agriculture (2006-35204-16880) and (2009-651-19-05672).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eva Bengtén or Melanie Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bengtén, E., Wilson, M. (2015). Antibody Repertoires in Fish. In: Hsu, E., Du Pasquier, L. (eds) Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations. Results and Problems in Cell Differentiation, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-20819-0_9

Download citation

Publish with us

Policies and ethics