Skip to main content

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 57))

Abstract

Plasmodium falciparum is the protozoan parasite that causes most malaria-associated morbidity and mortality in humans with over 500,000 deaths annually. The disease symptoms are associated with repeated cycles of invasion and asexual multiplication inside red blood cells of the parasite. Partial, non-sterile immunity to P. falciparum malaria develops only after repeated infections and continuous exposure. The successful evasion of the human immune system relies on the large repertoire of antigenically diverse parasite proteins displayed on the red blood cell surface and on the merozoite membrane where they are exposed to the human immune system. Expression switching of these polymorphic proteins between asexual parasite generations provides an efficient mechanism to adapt to the changing environment in the host and to maintain chronic infection. This chapter discusses antigenic diversity and variation in the malaria parasite and our current understanding of the molecular mechanisms that direct the expression of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMA-1:

Apical membrane antigen 1

ATS:

Acidic terminal sequence

CD36:

Cluster of differentiation 36

CIDR:

Cysteine-rich interdomain region

CM:

Cerebral malaria

COPII:

Coat protein complex II

DBL:

Duffy binding-like

DC:

Domain cassettes

dN/dS:

Non-synonymous/synonymous polymorphism rates (dN/dS)

DNA:

Deoxyribonucleic acid

EBA:

Erythrocyte-binding antigen

EBL:

Erythrocyte-binding-like

EPCR:

Endothelial protein C receptor

ER:

Endoplasmic reticulum

ETRAMPs:

Early transcribed membrane proteins

exp1:

Exported protein 1

GPI:

Glycosylphosphatidylinositol

H2A.Z:

Histone 2A.Z

H2B.Z:

Histone 2B.Z

H3K36me3:

Trimethylated histone H3 lysine 36

HB:

Homology blocks

HSP:

Heat shock protein

HT:

Host-targeting signal

ICAM-1:

Intercellular adhesion molecule 1

IE:

Infected erythrocyte

IgG:

Immunoglobulin G

KAHRP:

Knob-associated histidine-rich protein

LANCL1:

Lantibiotic synthetase component C-like 1

MAHRP2:

Membrane-associated histidine-rich protein 2

MC:

Maurer’s clefts

MSP:

Merozoite surface protein

MSRPs:

Merozoite surface-related proteins

ncRNA:

Non-coding RNA

PECAM1:

Platelet endothelial cell adhesion molecule 1

PEXEL:

Plasmodium export element

PfEMP1:

Plasmodium falciparum erythrocyte membrane protein 1

PfEMP3:

Plasmodium falciparum erythrocyte membrane protein 3

PfHP1:

P. falciparum heterochromatin protein 1

PfPTP1:

PfEMP1 trafficking protein 1

PfRh:

Plasmodium falciparum reticulocyte-binding homologue

PfRNase II:

Plasmodium falciparum ribonuclease II

PfSBP1:

Plasmodium falciparum skeleton-binding protein 1

PfSIP2:

Plasmodium falciparum SPE2-interacting protein

PTEX:

Plasmodium translocon complex

PV:

Parasitophorous vacuole

PVM:

Parasitophorous vacuole membrane

RBC:

Red blood cell

RBPs:

Reticulocyte-binding proteins

RESA:

Ring-infected erythrocyte surface protein

rif:

Repetitive interspersed family

RNA:

Ribonucleic acid

SPE2:

Subtelomeric var promoter element 2

stevor:

Subtelomeric open reading frame

TARE:

Telomere-associated repeat element

TRX2:

Thioredoxin-2

VSA:

Variant surface antigen

References

  • Abdel-Latif MS, Khattab A, Lindenthal C, Kremsner PG, Klinkert MQ (2002) Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect Immun 70(12):7013–7021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abdel-Latif MS, Dietz K, Issifou S, Kremsner PG, Klinkert MQ (2003) Antibodies to Plasmodium falciparum rifin proteins are associated with rapid parasite clearance and asymptomatic infections. Infect Immun 71(11):6229–6233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abdel-Latif MS, Cabrera G, Kohler C, Kremsner PG, Luty AJ (2004) Antibodies to rifin: a component of naturally acquired responses to Plasmodium falciparum variant surface antigens on infected erythrocytes. Am J Trop Med Hyg 71(2):179–186, 71/2/179 [pii]

    CAS  PubMed  Google Scholar 

  • Adams JH, Sim BKL, Dolan SA, Fang X, Kaslow DC, Miller LH (1992) A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci USA 89:7085–7089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adisa A, Albano FR, Reeder J, Foley M, Tilley L (2001) Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. J Cell Sci 114(Pt 18):3377–3386

    CAS  PubMed  Google Scholar 

  • Aikawa M, Torii M, Sjolander A, Berzins K, Perlmann P, Miller LH (1990) Pf155/RESA antigen is localized in dense granules of Plasmodium falciparum merozoites. Exp Parasitol 71(3):326–329

    Article  CAS  PubMed  Google Scholar 

  • Albano FR, Berman A, La Greca N, Hibbs AR, Wickham M, Foley M, Tilley L (1999) A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes. Eur J Cell Biol 78(7):453–462

    Article  CAS  PubMed  Google Scholar 

  • Amambua-Ngwa A, Tetteh KK, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, Cheeseman IH, Newbold CI, Holder AA, Knuepfer E, Janha O, Jallow M, Campino S, Macinnis B, Kwiatkowski DP, Conway DJ (2012) Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet 8(11), e1002992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, Menard R (2006) Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12(2):220–224

    Article  CAS  PubMed  Google Scholar 

  • Arnot DE, Ronander E, Bengtsson DC (2011) The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony. Int J Parasitol 41(1):71–80. doi:10.1016/j.ijpara.2010.07.012, S0020-7519(10)00286-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11(5):384–400. doi:10.1038/nrd3674, nrd3674 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Artzy-Randrup Y, Rorick MM, Day K, Chen D, Dobson AP, Pascual M (2012) Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. Elife 1, e00093. doi:10.7554/eLife.00093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Atkinson CT, Aikawa M, Perry G, Fujino T, Bennett V, Davidson EA, Howard RJ (1988) Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes. Eur J Cell Biol 45(2):192–199

    CAS  PubMed  Google Scholar 

  • Avraham I, Schreier J, Dzikowski R (2012) Insulator-like pairing elements regulate silencing and mutually exclusive expression in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA 109(52):E3678–E3686. doi:10.1073/pnas.1214572109, 1214572109 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avril M, Tripathi AK, Brazier AJ, Andisi C, Janes JH, Soma VL, Sullivan DJ Jr, Bull PC, Stins MF, Smith JD (2012) A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proc Natl Acad Sci USA 109(26):E1782–E1790. doi:10.1073/pnas.1120534109, 1120534109 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert JP, Noble WS, Le Roch KG (2014) Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res 24(6):974–988. doi:10.1101/gr.169417.113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bachmann A, Esser C, Petter M, Predehl S, von Kalckreuth V, Schmiedel S, Bruchhaus I, Tannich E (2009) Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient. PLoS One 4(10), e7459. doi:10.1371/journal.pone.0007459

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bachmann A, Petter M, Tilly A-K, Biller L, Uliczka KA, Duffy MF, Tannich E, Bruchhaus I (2012) Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony. PloS one 7(11), e49540. doi:10.1371/journal.pone.0049540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bannister LH, Hopkins JM, Fowler RE, Krishna S, Mitchell GH (2000) A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol Today 16(10):427–433

    Article  CAS  PubMed  Google Scholar 

  • Bannister LH, Hopkins JM, Margos G, Dluzewski AR, Mitchell GH (2004) Three-dimensional ultrastructure of the ring stage of Plasmodium falciparum: evidence for export pathways. Microsc Microanal 10(5):551–562

    Article  CAS  PubMed  Google Scholar 

  • Barfod L, Bernasconi NL, Dahlback M, Jarrossay D, Andersen PH, Salanti A, Ofori MF, Turner L, Resende M, Nielsen MA, Theander TG, Sallusto F, Lanzavecchia A, Hviid L (2007) Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA. Mol Microbiol 63(2):335–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barry AE, Leliwa-Sytek A, Tavul L, Imrie H, Migot-Nabias F, Brown SM, McVean GA, Day KP (2007) Population genomics of the immune evasion (var) genes of Plasmodium falciparum. PLoS Pathog 3(3), e34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ (1995) Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82:77–87

    Article  CAS  PubMed  Google Scholar 

  • Baum J, Thomas AW, Conway DJ (2003) Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax. Genetics 163(4):1327–1336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, Ehlgen F, Ralph SA, Beeson JG, Cowman AF (2009) Reticulocyte-binding protein homologue 5 – an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol 39(3):371–380

    Article  CAS  PubMed  Google Scholar 

  • Beck JR, Muralidharan V, Oksman A, Goldberg DE (2014) PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 511(7511):592–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berger SS, Turner L, Wang CW, Petersen JE, Kraft M, Lusingu JP, Mmbando B, Marquard AM, Bengtsson DB, Hviid L, Nielsen MA, Theander TG, Lavstsen T (2013) Plasmodium falciparum expressing domain cassette 5 type PfEMP1 (DC5-PfEMP1) bind PECAM1. PLoS One 8(7), e69117. doi:10.1371/journal.pone.0069117, PONE-D-13-01460 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biggs BA, Kemp DJ, Brown GV (1989) Subtelomeric chromosome deletions in field isolates of Plasmodium falciparumand their relationship to loss of cytoadherence in vitro. Proc Natl Acad Sci USA 86(7):2428–2432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biggs BA, Goozé L, Wycherley K, Wollish W, Southwell B, Leech JH, Brown GV (1991) Antigenic variation in Plasmodium falciparum. Proc Natl Acad Sci USA 88(20):9171–9174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blisnick T, Morales Betoulle ME, Barale JC, Uzureau P, Berry L, Desroses S, Fujioka H, Mattei D, Braun Breton C (2000) Pfsbp1, a Maurer’s cleftPlasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol Biochem Parasitol 111(1):107–121

    Article  CAS  PubMed  Google Scholar 

  • Blisnick T, Vincensini L, Barale JC, Namane A, Braun Breton C (2005) LANCL1, an erythrocyte protein recruited to the Maurer’s clefts during Plasmodium falciparum development. Mol Biochem Parasitol 141(1):39–47

    Article  CAS  PubMed  Google Scholar 

  • Blythe JE, Yam XY, Kuss C, Bozdech Z, Holder AA, Marsh K, Langhorne J, Preiser PR (2008) Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect Immun 76(7):3329–3336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blythe JE, Niang M, Marsh K, Holder AA, Langhorne J, Preiser PR (2009) Characterization of the repertoire diversity of the Plasmodium falciparum stevor multigene family in laboratory and field isolates. Malar J 8:140

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bockhorst J, Lu F, Janes JH, Keebler J, Gamain B, Awadalla P, Su XZ, Samudrala R, Jojic N, Smith JD (2007) Structural polymorphism and diversifying selection on the pregnancy malaria vaccine candidate VAR2CSA. Mol Biochem Parasitol 155(2):103–112. doi:10.1016/j.molbiopara.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  • Boddey JA, Hodder AN, Gunther S, Gilson PR, Patsiouras H, Kapp EA, Pearce JA, de Koning-Ward TF, Simpson RJ, Crabb BS, Cowman AF (2010) An aspartyl protease directs malaria effector proteins to the host cell. Nature 463(7281):627–631. doi:10.1038/nature08728, nature08728 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boddey JA, Carvalho TG, Hodder AN, Sargeant TJ, Sleebs BE, Marapana D, Lopaticki S, Nebl T, Cowman AF (2013) Role of plasmepsin V in export of diverse protein families from the Plasmodium falciparum exportome. Traffic 14(5):532–550

    Article  CAS  PubMed  Google Scholar 

  • Bopp SE, Manary MJ, Bright AT, Johnston GL, Dharia NV, Luna FL, McCormack S, Plouffe D, McNamara CW, Walker JR, Fidock DA, Denchi EL, Winzeler EA (2013) Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet 9(2), e1003293. doi:10.1371/journal.pgen.1003293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bordbar B, Tuikue Ndam N, Renard E, Jafari-Guemouri S, Tavul L, Jennison C, Gnidehou S, Tahar R, Gamboa D, Bendezu J, Menard D, Barry AE, Deloron P, Sabbagh A (2014) Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. Infect Genet Evol 25:81–92. doi:10.1016/j.meegid.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  • Boyle MJ, Langer C, Chan JA, Hodder AN, Coppel RL, Anders RF, Beeson JG (2014) Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. Infect Immun 82(3):924–936

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brancucci NM, Witmer K, Schmid CD, Flueck C, Voss TS (2012) Identification of a cis-acting DNA-protein interaction implicated in singular var gene choice in Plasmodium falciparum. Cell Microbiol 14(12):1836–1848. doi:10.1111/cmi.12004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brancucci NM, Bertschi NL, Zhu L, Niederwieser I, Chin WH, Wampfler R, Freymond C, Rottmann M, Felger I, Bozdech Z, Voss TS (2014) Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16(2):165–176. doi:10.1016/j.chom.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  • Bray RS, Sinden RE (1979) The sequestration of Plasmodium falciparum infected erythrocytes in the placenta. Trans R Soc Trop Med Hyg 73(6):716–719

    Article  CAS  PubMed  Google Scholar 

  • Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, Ribacke U, Volkman S, Duraisingh M, Wirth D, Sabeti PC, Rinn JL (2011) A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol 12(6):R56. doi:10.1186/gb-2011-12-6-r56, gb-2011-12-6-r56 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brolin KJ, Ribacke U, Nilsson S, Ankarklev J, Moll K, Wahlgren M, Chen Q (2009) Simultaneous transcription of duplicated var2csa gene copies in individual Plasmodium falciparum parasites. Genome Biol 10(10):R117. doi:10.1186/gb-2009-10-10-r117, gb-2009-10-10-r117 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bruce-Chwatt LJ (1963) A longitudinal survey of natural malaria infection in a group of west African adults. West Afr Med J 12:199–217

    CAS  PubMed  Google Scholar 

  • Buckee CO, Recker M (2012) Evolution of the multi-domain structures of virulence genes in the human malaria parasite, Plasmodium falciparum. PLoS Comput Biol 8(4), e1002451. doi:10.1371/journal.pcbi.1002451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold CI, Marsh K (1998) Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med 4(3):358–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bull PC, Kortok M, Kai O, Ndungu F, Ross A, Lowe BS, Newbold CI, Marsh K (2000) Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J Infect Dis 182(1):252–259

    Article  CAS  PubMed  Google Scholar 

  • Bultrini E, Brick K, Mukherjee S, Zhang Y, Silvestrini F, Alano P, Pizzi E (2009) Revisiting the Plasmodium falciparum RIFIN family: from comparative genomics to 3D-model prediction. BMC Genomics 10:445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cabral FJ, Fotoran WL, Wunderlich G (2012) Dynamic activation and repression of the Plasmodium falciparum rif gene family and their relation to chromatin modification. PLoS One 7(1), e29881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calderwood MS, Gannoun-Zaki L, Wellems TE, Deitsch KW (2003) Plasmodium falciparum var genes are regulated by two regions with separate promoters, one upstream of the coding region and a second within the intron. J Biol Chem 278(36):34125–34132

    Article  CAS  PubMed  Google Scholar 

  • Carlson J, Helmby H, Hill AV, Brewster D, Greenwood BM, Wahlgren M (1990) Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 336(8729):1457–1460

    Article  CAS  PubMed  Google Scholar 

  • Cham GK, Turner L, Lusingu J, Vestergaard L, Mmbando BP, Kurtis JD, Jensen AT, Salanti A, Lavstsen T, Theander TG (2009) Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains. J Immunol 183(5):3356–3363. doi:10.4049/jimmunol.0901331, jimmunol.0901331 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chan J-A, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJI, Petter M, Chesson JM, Langer C, Warimwe GM, Duffy MF, Rogerson SJ, Bull PC, Cowman AF, Marsh K, Beeson JG (2012a) Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Investig 122(9):3227–3238. doi:10.1172/jci62182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan JA, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJ, Petter M, Chesson JM, Langer C, Warimwe GM, Duffy MF, Rogerson SJ, Bull PC, Cowman AF, Marsh K, Beeson JG (2012b) Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest 122(9):3227–3238. doi:10.1172/JCI62182, 62182 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q (2007) The naturally acquired immunity in severe malaria and its implication for a PfEMP-1 based vaccine. Microbes Infect 9(6):777–783

    Article  PubMed  CAS  Google Scholar 

  • Chen DS, Barry AE, Leliwa-Sytek A, Smith TA, Peterson I, Brown SM, Migot-Nabias F, Deloron P, Kortok MM, Marsh K, Daily JP, Ndiaye D, Sarr O, Mboup S, Day KP (2011) A molecular epidemiological study of var gene diversity to characterize the reservoir of Plasmodium falciparum in humans in Africa. PLoS One 6(2), e16629. doi:10.1371/journal.pone.0016629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Q, Cloonan N, Fischer K, Thompson J, Waine G, Lanzer M, Saul A (1998) stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol Biochem Parasitol 97(1–2):161–176, S0166-6851(98)00144-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Chitnis CE, Miller LH (1994) Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med 180:497–506

    Article  CAS  PubMed  Google Scholar 

  • Claessens A, Ghumra A, Gupta AP, Mok S, Bozdech Z, Rowe JA (2010) Design of a variant surface antigen-supplemented microarray chip for whole transcriptome analysis of multiple Plasmodium falciparum cytoadherent strains, and identification of strain-transcendent rif and stevor genes. Malar J 10:180

    Article  CAS  Google Scholar 

  • Claessens A, Adams Y, Ghumra A, Lindergard G, Buchan CC, Andisi C, Bull PC, Mok S, Gupta AP, Wang CW, Turner L, Arman M, Raza A, Bozdech Z, Rowe JA (2012) A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci USA 109(26):E1772–E1781. doi:10.1073/pnas.1120461109, 1120461109 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claessens A, Hamilton WL, Kekre M, Otto TD, Faizullabhoy A, Rayner JC, Kwiatkowski D (2014) Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis. PLoS Genet 10(12), e1004812. doi:10.1371/journal.pgen.1004812

    Article  PubMed Central  PubMed  Google Scholar 

  • Coleman BI, Ribacke U, Manary M, Bei AK, Winzeler EA, Wirth DF, Duraisingh MT (2012) Nuclear repositioning precedes promoter accessibility and is linked to the switching frequency of a Plasmodium falciparum invasion gene. Cell Host Microbe 12(6):739–750. doi:10.1016/j.chom.2012.11.004, S1931-3128(12)00394-0 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman BI, Skillman KM, Jiang RH, Childs LM, Altenhofen LM, Ganter M, Leung Y, Goldowitz I, Kafsack BF, Marti M, Llinas M, Buckee CO, Duraisingh MT (2014) A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16(2):177–186. doi:10.1016/j.chom.2014.06.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Combes V, Rosenkranz AR, Redard M, Pizzolato G, Lepidi H, Vestweber D, Mayadas TN, Grau GE (2004a) Pathogenic role of P-selectin in experimental cerebral malaria: importance of the endothelial compartment. Am J Pathol 164(3):781–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Combes V, Taylor TE, Juhan-Vague I, Mege JL, Mwenechanya J, Tembo M, Grau GE, Molyneux ME (2004b) Circulating endothelial microparticles in Malawian children with severe falciparum malaria complicated with coma. JAMA 291(21):2542–2544

    CAS  PubMed  Google Scholar 

  • Cooke BM, Berendt AR, Craig AG, MacGregor J, Newbold CI, Nash GB (1994) Rolling and stationary cytoadhesion of red blood cells parasitized by Plasmodium falciparum: separate roles for ICAM-1, CD36 and thrombospondin. Br J Haematol 87:162–170

    Article  CAS  PubMed  Google Scholar 

  • Cooke BM, Buckingham DW, Glenister FK, Fernandez KM, Bannister LH, Marti M, Mohandas N, Coppel RL (2006) A Maurer’s cleft-associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J Cell Biol 172(6):899–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF (2013) Plasmodium rhoptry proteins: why order is important. Trends Parasitol 29(5):228–236

    Article  CAS  PubMed  Google Scholar 

  • Cowman AF, Berry D, Baum J (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol 198(6):961–971. doi:10.1083/jcb.201206112, jcb.201206112 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM, Wickham ME, Brown GV, Coppel RL, Cowman AF (1997) Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89(2):287–296

    Article  CAS  PubMed  Google Scholar 

  • Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, Mboup S, Ndir O, Kwiatkowski DP, Duraisingh MT, Rayner JC, Wright GJ (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480(7378):534–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT, Sanders PR, Lundie RJ, Maier AG, Cowman AF, Crabb BS (2009) A newly discovered protein export machine in malaria parasites. Nature 459(7249):945–949. doi:10.1038/nature08104, nature08104 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deitsch KW, Calderwood MS, Wellems TE (2001) Cooperative silencing elements in var genes. Nature 412:875–876

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh AS, Srivastava S, Herrmann S, Gupta A, Mitra P, Gilberger TW, Dhar SK (2012) The role of N-terminus of Plasmodium falciparum ORC1 in telomeric localization and var gene silencing. Nucleic Acids Res 40(12):5313–5331. doi:10.1093/nar/gks202, gks202 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dharia NV, Plouffe D, Bopp SE, Gonzalez-Paez GE, Lucas C, Salas C, Soberon V, Bursulaya B, Kochel TJ, Bacon DJ, Winzeler EA (2010) Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. Genome Res 20(11):1534–1544. doi:10.1101/gr.105163.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, Kamiza S, Molyneux M, Taylor TE (2011) The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol 178(5):2146–2158. doi:10.1016/j.ajpath.2011.01.016

    Article  PubMed Central  PubMed  Google Scholar 

  • Douglas AD, Baldeviano GC, Lucas CM, Lugo-Roman LA, Crosnier C, Bartholdson SJ, Diouf A, Miura K, Lambert LE, Ventocilla JA, Leiva KP, Milne KH, Illingworth JJ, Spencer AJ, Hjerrild KA, Alanine DG, Turner AV, Moorhead JT, Edgel KA, Wu Y, Long CA, Wright GJ, Lescano AG, Draper SJ (2015) A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in Aotus monkeys. Cell Host Microbe 17(1):130–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duffy MF, Byrne TJ, Carret C, Ivens A, Brown GV (2009) Ectopic recombination of a malaria var gene during mitosis associated with an altered var switch rate. J Mol Biol 389(3):453–469. doi:10.1016/j.jmb.2009.04.032, S0022-2836(09)00476-8 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duffy MF, Selvarajah SA, Josling GA, Petter M (2013) Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics 13(3):203–216. doi:10.1093/bfgp/elt047, elt047 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, Cowman AF (2003) Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 22(5):1047–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT, Thompson JK, Freitas-Junior LH, Scherf A, Crabb BS, Cowman AF (2005) Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 121(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Dzikowski R, Frank M, Deitsch K (2006) Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS Pathog 2(3), e22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Elmendorf HG, Haldar K (1993) Secretory transport in Plasmodium. Parasitol Today 9(3):98–102

    Article  CAS  PubMed  Google Scholar 

  • Elmendorf HG, Haldar K (1994) Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. J Cell Biol 124(4):449–462

    Article  CAS  PubMed  Google Scholar 

  • Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, Chisholm SA, Counihan NA, Shaw PJ, Pino P, Chan JA, Azevedo MF, Rogerson SJ, Beeson JG, Crabb BS, Gilson PR, de Koning-Ward TF (2014) PTEX is an essential nexus for protein export in malaria parasites. Nature 511(7511):587–591. doi:10.1038/nature13555

    Article  CAS  PubMed  Google Scholar 

  • Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW (2009) Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA 15(1):116–127. doi:10.1261/rna.1080109, rna.1080109 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Falk N, Kaestli M, Qi W, Ott M, Baea K, Cortes A, Beck HP (2009) Analysis of Plasmodium falciparum var genes expressed in children from Papua New Guinea. J Infect Dis 200(3):347–356. doi:10.1086/600071

    Article  CAS  PubMed  Google Scholar 

  • Fernandez V, Hommel M, Chen Q, Hagblom P, Wahlgren M (1999) Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med 190(10):1393–1404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira MU, da Silva Nunes M, Wunderlich G (2004) Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol 11(6):987–995

    PubMed Central  CAS  PubMed  Google Scholar 

  • Figueiredo LM, Freitas-Junior LH, Bottius E, Olivo-Marin JC, Scherf A (2002) A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation. EMBO J 21(4):815–824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer K, Marti T, Rick B, Johnson D, Benting J, Baumeister S, Helmbrecht C, Lanzer M, Lingelbach K (1998) Characterization and cloning of the gene encoding the vacuolar membrane protein EXP-2 from Plasmodium falciparum. Mol Biochem Parasitol 92(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM, Alako BT, Ehlgen F, Ralph SA, Cowman AF, Bozdech Z, Stunnenberg HG, Voss TS (2009) Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog 5(9), e1000569. doi:10.1371/journal.ppat.1000569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Foley M, Tilley L, Sawyer WH, Anders RF (1991) The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Mol Biochem Parasitol 46(1):137–147

    Article  CAS  PubMed  Google Scholar 

  • Frank M, Dzikowski R, Costantini D, Amulic B, Berdougo E, Deitsch K (2006) Strict pairing of var promoters and introns is required for var gene silencing in the malaria parasite Plasmodium falciparum. J Biol Chem 281(15):9942–9952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frank M, Dzikowski R, Amulic B, Deitsch K (2007) Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol Microbiol 64(6):1486–1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freitas-Junior LH, Bottius E, Pirrit LA, Deitsch KW, Scheidig C, Guinet F, Nehrbass U, Wellems TE, Scherf A (2000) Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of Plasmodium falciparum. Nature 407(6807):1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK, Rojas-Meza AP, Mancio-Silva L, Leal-Silvestre RJ, Gontijo AM, Shorte S, Scherf A (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Fremount HN, Rossan RN (1974) The sites of sequestration of the Uganda-Palo Alto strain of Plasmodium falciparum-infected red blood cells in the squirrel monkey, Saimiri sciureus. J Parasitol 60(3):534–536

    Article  CAS  PubMed  Google Scholar 

  • French JB, Cen Y, Sauve AA (2008) Plasmodium falciparum Sir2 is an NAD + -dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 47(38):10227–10239. doi:10.1021/bi800767t

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frischknecht F, Baldacci P, Martin B, Zimmer C, Thiberge S, Olivo-Marin JC, Shorte SL, Menard R (2004) Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cell Microbiol 6(7):687–694

    Article  CAS  PubMed  Google Scholar 

  • Galinski MR, Medina CC, Ingravallo P, Barnwell JW (1992) A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69(7):1213–1226

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002a) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511. doi:10.1038/nature01097, nature01097 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Elsen JA, Rutherford K, Saizberg SL, Craig A, Kyes S, Chan M-S, Nene V, Shallom SJ, Suh B, Peterson J, Angluoll S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Valdya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LD, Subramanlan GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002b) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Genton B, Betuela I, Felger I, Al-Yaman F, Anders RF, Saul A, Rare L, Baisor M, Lorry K, Brown GV, Pye D, Irving DO, Smith TA, Beck HP, Alpers MP (2002) A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis 185(6):820–827

    Article  PubMed  Google Scholar 

  • Gilson PR, Crabb BS (2009) Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int J Parasitol 39(1):91–96. doi:10.1016/j.ijpara.2008.09.007, S0020-7519(08)00378-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan AM, Kumar N (2013) Opposing roles for two molecular forms of replication protein A in Rad51-Rad54-mediated DNA recombination in Plasmodium falciparum. MBio 4(3):e00252-13. doi:10.1128/mBio.00252-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gruenberg J, Allred DR, Sherman IW (1983) Scanning electron microscope-analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. J Cell Biol 97(3):795–802

    Article  CAS  PubMed  Google Scholar 

  • Gruring C, Heiber A, Kruse F, Ungefehr J, Gilberger TW, Spielmann T (2011) Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat Commun 2:165

    Article  PubMed  CAS  Google Scholar 

  • Gunther K, Tummler M, Arnold HH, Ridley R, Goman M, Scaife JG, Lingelbach K (1991) An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. Mol Biochem Parasitol 46(1):149–157

    Article  CAS  PubMed  Google Scholar 

  • Haeggstrom M, Kironde F, Berzins K, Chen Q, Wahlgren M, Fernandez V (2004) Common trafficking pathway for variant antigens destined for the surface of the Plasmodium falciparum-infected erythrocyte. Mol Biochem Parasitol 133(1):1–14, S0166685103002391 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Haeggstrom M, von Euler A, Kironde F, Fernandez V, Wahlgren M (2007) Characterization of Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. Am J Trop Med Hyg 76(1):27–32, 76/1/27 [pii]

    PubMed  Google Scholar 

  • Hanssen E, Carlton P, Deed S, Klonis N, Sedat J, DeRisi J, Tilley L (2010) Whole cell imaging reveals novel modular features of the exomembrane system of the malaria parasite, Plasmodium falciparum. Int J Parasitol 40(1):123–134. doi:10.1016/j.ijpara.2009.09.004, S0020-7519(09)00371-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Heddini A, Chen Q, Obiero J, Kai O, Fernandez V, Marsh K, Muller WA, Wahlgren M (2001) Binding of Plasmodium falciparum-infected erythrocytes to soluble platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31): frequent recognition by clinical isolates. Am J Trop Med Hyg 65(1):47–51

    CAS  PubMed  Google Scholar 

  • Heidrich HG, Strych W, Mrema JE (1983) Identification of surface and internal antigens from spontaneously released Plasmodium falciparum merozoites by radio-iodination and metabolic labelling. Z Parasitenkd 69(6):715–725

    Article  CAS  PubMed  Google Scholar 

  • Helmby H, Cavelier L, Pettersson U, Wahlgren M (1993) Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infect Immun 61(1):284–288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Higgins MK (2008) The structure of a chondroitin sulfate-binding domain important in placental malaria. J Biol Chem 283(32):21842–21846. doi:10.1074/jbc.C800086200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306(5703):1934–1937

    Article  CAS  PubMed  Google Scholar 

  • Hinterberg K, Scherf A, Gysin J, Toyoshima T, Aikawa M, Mazie JC, da Silva LP, Mattei D (1994) Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer’s clefts. Exp Parasitol 79(3):279–291

    Article  CAS  PubMed  Google Scholar 

  • Holder AA, Guevara Patino JA, Uthaipibull C, Syed SE, Ling IT, Scott-Finnigan T, Blackman MJ (1999) Merozoite surface protein 1, immune evasion, and vaccines against asexual blood stage malaria. Parassitologia 41(1–3):409–414

    CAS  PubMed  Google Scholar 

  • Howell DP, Levin EA, Springer AL, Kraemer SM, Phippard DJ, Schief WR, Smith JD (2008) Mapping a common interaction site used by Plasmodium falciparum Duffy binding-like domains to bind diverse host receptors. Mol Microbiol 67(1):78–87

    Article  CAS  PubMed  Google Scholar 

  • Howitt CA, Wilinski D, Llinas M, Templeton TJ, Dzikowski R, Deitsch KW (2009) Clonally variant gene families in Plasmodium falciparum share a common activation factor. Mol Microbiol 73(6):1171–1185. doi:10.1111/j.1365-2958.2009.06846.x, MMI6846 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt NH, Grau GE (2003) Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 24(9):491–499

    Article  CAS  PubMed  Google Scholar 

  • Hviid L (2007) Development of vaccines against Plasmodium falciparum malaria: taking lessons from naturally acquired protective immunity. Microbes Infect 9(6):772–776

    Article  CAS  PubMed  Google Scholar 

  • Janssen CS, Phillips RS, Turner CM, Barrett MP (2004) Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res 32(19):5712–5720. doi:10.1093/nar/gkh907, 32/19/5712 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen AT, Magistrado P, Sharp S, Joergensen L, Lavstsen T, Chiucchiuini A, Salanti A, Vestergaard LS, Lusingu JP, Hermsen R, Sauerwein R, Christensen J, Nielsen MA, Hviid L, Sutherland C, Staalsoe T, Theander TG (2004) Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J Exp Med 199(9):1179–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P, Rayavara K, Yang W, Turner L, Lavstsen T, Theander TG, Peng W, Wei G, Jing Q, Wakabayashi Y, Bansal A, Luo Y, Ribeiro JM, Scherf A, Aravind L, Zhu J, Zhao K, Miller LH (2013) PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature 499(7457):223–227. doi:10.1038/nature12361, nature12361 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joannin N, Abhiman S, Sonnhammer EL, Wahlgren M (2008) Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics 9:19. doi:10.1186/1471-2164-9-19, 1471-2164-9-19 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Joergensen L, Bengtsson DC, Bengtsson A, Ronander E, Berger SS, Turner L, Dalgaard MB, Cham GK, Victor ME, Lavstsen T, Theander TG, Arnot DE, Jensen AT (2010) Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1. PLoS Pathog 6(9), e1001083. doi:10.1371/journal.ppat.1001083

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kadekoppala M, Ogun SA, Howell S, Gunaratne RS, Holder AA (2010) Systematic genetic analysis of the Plasmodium falciparum MSP7-like family reveals differences in protein expression, location, and importance in asexual growth of the blood-stage parasite. Eukaryot cell 9(7):1064–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaestli M, Cockburn IA, Cortes A, Baea K, Rowe JA, Beck HP (2006) Virulence of malaria is associated with differential expression of Plasmodium falciparum var gene subgroups in a case-control study. J Infect Dis 193(11):1567–1574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalmbach Y, Rottmann M, Kombila M, Kremsner PG, Beck HP, Kun JF (2010) Differential var gene expression in children with malaria and antidromic effects on host gene expression. J Infect Dis 202(2):313–317. doi:10.1086/653586

    Article  CAS  PubMed  Google Scholar 

  • Kauth CW, Epp C, Bujard H, Lutz R (2003) The merozoite surface protein 1 complex of human malaria parasite Plasmodium falciparum: interactions and arrangements of subunits. J Biol Chem 278(25):22257–22264

    Article  CAS  PubMed  Google Scholar 

  • Kaviratne M, Khan SM, Jarra W, Preiser PR (2002) Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryot cell 1(6):926–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan SM, Jarra W, Preiser PR (2001) The 235 kDa rhoptry protein of Plasmodium (yoelii) yoelii: function at the junction. Mol Biochem Parasitol 117(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Khattab A, Meri S (2011) Exposure of the Plasmodium falciparum clonally variant STEVOR proteins on the merozoite surface. Malar J 10:58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khattab A, Bonow I, Schreiber N, Petter M, Schmetz C, Klinkert MQ (2008) Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion. Malar J 7:137. doi:10.1186/1475-2875-7-137, 1475-2875-7-137 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  • Klein MM, Gittis AG, Su HP, Makobongo MO, Moore JM, Singh S, Miller LH, Garboczi DN (2008) The cysteine-rich interdomain region from the highly variable Plasmodium falciparum erythrocyte membrane protein-1 exhibits a conserved structure. PLoS Pathog 4(9), e1000147. doi:10.1371/journal.ppat.1000147

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kraemer SM, Smith JD (2006) A family affair: var genes, PfEMP1 binding, and malaria disease. Curr Opin Microbiol 9(4):374–380

    Article  CAS  PubMed  Google Scholar 

  • Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, Christodoulou Z, Smith LM, Wang W, Levin E, Newbold CI, Myler PJ, Smith JD (2007) Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8:45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kulzer S, Rug M, Brinkmann K, Cannon P, Cowman A, Lingelbach K, Blatch GL, Maier AG, Przyborski JM (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 12(10):1398–1420

    Article  PubMed  CAS  Google Scholar 

  • Kulzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER, Blatch GL, Crabb BS, Gilson PR, Przyborski JM (2012)Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14(11):1784–1795. doi:10.1111/j.1462-5822.2012.01840.x

    Article  PubMed  CAS  Google Scholar 

  • Kyes SA, Rowe JA, Kriek N, Newbold CI (1999) Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci USA 96(16):9333–9338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kyes S, Pinches R, Newbold C (2000) A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. Mol Biochem Parasitol 105(2):311–315, S0166-6851(99)00193-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kyriacou HM, Stone GN, Challis RJ, Raza A, Lyke KE, Thera MA, Kone AK, Doumbo OK, Plowe CV, Rowe JA (2006) Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia. Mol Biochem Parasitol 150(2):211–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langreth SG, Peterson E (1985) Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infect Immun 47(3):760–766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lanzer M, Wickert H, Krohne G, Vincensini L, Braun Breton C (2006) Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 36(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Lau CK, Turner L, Jespersen JS, Lowe ED, Petersen B, Wang CW, Petersen JE, Lusingu J, Theander TG, Lavstsen T, Higgins MK (2015) Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria. Cell Host Microbe 17(1):118–129. doi:10.1016/j.chom.2014.11.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauer SA, Rathod PK, Ghori N, Haldar K (1997) A membrane network for nutrient import in red cells infected with the malaria parasite. Science 276(5315):1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Lauer S, VanWye J, Harrison T, McManus H, Samuel BU, Hiller NL, Mohandas N, Haldar K (2000) Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J 19(14):3556–3564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lavazec C, Sanyal S, Templeton TJ (2007) Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol Microbiol 64(6):1621–1634

    Article  CAS  PubMed  Google Scholar 

  • Lavstsen T, Salanti A, Jensen AT, Arnot DE, Theander TG (2003) Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malar J 2(1):27

    Article  PubMed Central  PubMed  Google Scholar 

  • Lavstsen T, Turner L, Saguti F, Magistrado P, Rask TS, Jespersen JS, Wang CW, Berger SS, Baraka V, Marquard AM, Seguin-Orlando A, Willerslev E, Gilbert MT, Lusingu J, Theander TG (2012) Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc Natl Acad Sci USA 109(26):E1791–E1800. doi:10.1073/pnas.1120455109, 1120455109 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemieux JE, Kyes SA, Otto TD, Feller AI, Eastman RT, Pinches RA, Berriman M, Su XZ, Newbold CI (2013) Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation. Mol Microbiol. doi:10.1111/mmi.12381

    PubMed Central  PubMed  Google Scholar 

  • Lobo CA, Rodriguez M, Reid M, Lustigman S (2003) Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood 101(11):4628–4631

    Article  CAS  PubMed  Google Scholar 

  • Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham WH, Triglia T, Gout A, Speed TP, Beeson JG, Healer J, Cowman AF (2011) Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 79(3):1107–1117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Rubio JJ, Riviere L, Scherf A (2007) Shared epigenetic mechanisms control virulence factors in protozoan parasites. Curr Opin Microbiol 10(6):560–568

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubio JJ, Mancio-Silva L, Scherf A (2009) Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5(2):179–190. doi:10.1016/j.chom.2008.12.012, S1931-3128(09)00030-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA (1985) Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 119:385–401

    PubMed Central  CAS  PubMed  Google Scholar 

  • Magistrado PA, Lusingu J, Vestergaard LS, Lemnge M, Lavstsen T, Turner L, Hviid L, Jensen AT, Theander TG (2007) Immunoglobulin G antibody reactivity to a group A Plasmodium falciparum erythrocyte membrane protein 1 and protection from P. falciparum malaria. Infect Immun 75(5):2415–2420. doi:10.1128/IAI.00951-06, IAI.00951-06 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA, Cowman AF (2003) Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 9(1):87–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marsh K, Otoo L, Hayes RJ, Carson DC, Greenwood BM (1989) Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans R Soc Trop Med Hyg 83(3):293–303

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306(5703):1930–1933

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Baum J, Rug M, Tilley L, Cowman AF (2005) Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J Cell Biol 171(4):587–592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marty AJ, Thompson JK, Duffy MF, Voss TS, Cowman AF, Crabb BS (2006) Evidence that Plasmodium falciparum chromosome end clusters are cross-linked by protein and are the sites of both virulence gene silencing and activation. Mol Microbiol 62(1):72–83

    Article  CAS  PubMed  Google Scholar 

  • Matthews K, Kalanon M, Chisholm SA, Sturm A, Goodman CD, Dixon MW, Sanders PR, Nebl T, Fraser F, Haase S, McFadden GI, Gilson PR, Crabb BS, de Koning-Ward TF (2013) The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth. Mol Microbiol 89(6):1167–1186

    Article  CAS  PubMed  Google Scholar 

  • Mayer DC, Cofie J, Jiang L, Hartl DL, Tracy E, Kabat J, Mendoza LH, Miller LH (2009) Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc Natl Acad Sci USA 106(13):5348–5352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McBride JS, Heidrich HG (1987) Fragments of the polymorphic Mr 185,000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Mol Biochem Parasitol 23(1):71–84

    Article  CAS  PubMed  Google Scholar 

  • McGregor IA (1974) Mechanisms of acquired immunity and epidemiological patterns of antibody responses in malaria in man. Bull World Health Organ 50(3-4):259–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • McMillan PJ, Millet C, Batinovic S, Maiorca M, Hanssen E, Kenny S, Muhle RA, Melcher M, Fidock DA, Smith JD, Dixon MW, Tilley L (2013) Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell Microbiol 15(8):1401–1418. doi:10.1111/cmi.12125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R (2013) Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol 11(10):701–712. doi:10.1038/nrmicro3111, nrmicro3111 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, Ackerman HC, Su XZ, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19(2):156–167. doi:10.1038/nm.3073, m.3073 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Mills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KS, Lim CT, Milon G, David PH, Mercereau-Puijalon O, Bonnefoy S, Suresh S (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci USA 104(22):9213–9217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mota MM, Hafalla JC, Rodriguez A (2002) Migration through host cells activates Plasmodium sporozoites for infection. Nat Med 8(11):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Moxon CA, Wassmer SC, Milner DA Jr, Chisala NV, Taylor TE, Seydel KB, Molyneux ME, Faragher B, Esmon CT, Downey C, Toh CH, Craig AG, Heyderman RS (2013) Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood 122(5):842–851. doi:10.1182/blood-2013-03-490219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mphande FA, Ribacke U, Kaneko O, Kironde F, Winter G, Wahlgren M (2008) SURFIN4.1, a schizont-merozoite associated protein in the SURFIN family of Plasmodium falciparum. Malar J 7:116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, Prohaska R, Low PS, Tanner MJ, Mohandas N, Haldar K (2004) Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 103(5):1920–1928

    Article  CAS  PubMed  Google Scholar 

  • Nagao E, Seydel KB, Dvorak JA (2002) Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection. Exp Parasitol 102(1):57–59

    Article  CAS  PubMed  Google Scholar 

  • Newbold CI, Pinches R, Roberts DJ, Marsh K (1992) Plasmodium falciparum: the human agglutinating antibody response to the infected red cell surface is predominantly variant specific. Exp Parasitol 75(3):281–292

    Article  CAS  PubMed  Google Scholar 

  • Newbold C, Warn P, Black G, Berendt A, Craig A, Snow B, Msobo M, Peshu N, Marsh K (1997) Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg 57:389–398

    CAS  PubMed  Google Scholar 

  • Nguansangiam S, Day NP, Hien TT, Mai NT, Chaisri U, Riganti M, Dondorp AM, Lee SJ, Phu NH, Turner GD, White NJ, Ferguson DJ, Pongponratn E (2007) A quantitative ultrastructural study of renal pathology in fatal Plasmodium falciparum malaria. Trop Med Int Health 12(9):1037–1050. doi:10.1111/j.1365-3156.2007.01881.x, TMI1881 [pii]

    Article  PubMed  Google Scholar 

  • Niang M, Yan Yam X, Preiser PR (2009) The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog 5(2), e1000307. doi:10.1371/journal.ppat.1000307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S, Kanjee U, Gunalan K, Amaladoss A, Yeo KP, Bob NS, Malleret B, Duraisingh MT, Preiser PR (2014) STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16(1):81–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen MA, Staalsoe T, Kurtzhals JA, Goka BQ, Dodoo D, Alifrangis M, Theander TG, Akanmori BD, Hviid L (2002) Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J Immunol 168(7):3444–3450

    Article  CAS  PubMed  Google Scholar 

  • Normark J, Nilsson D, Ribacke U, Winter G, Moll K, Wheelock CE, Bayarugaba J, Kironde F, Egwang TG, Chen Q, Andersson B, Wahlgren M (2007) PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria. Proc Natl Acad Sci USA 104(40):15835–15840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Donnell RA, Freitas-Junior LH, Preiser PR, Williamson DH, Duraisingh M, McElwain TF, Scherf A, Cowman AF, Crabb BS (2002) A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J 21(5):1231–1239

    Article  PubMed Central  PubMed  Google Scholar 

  • Ochola LB, Siddondo BR, Ocholla H, Nkya S, Kimani EN, Williams TN, Makale JO, Liljander A, Urban BC, Bull PC, Szestak T, Marsh K, Craig AG (2011) Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS One 6(3), e14741. doi:10.1371/journal.pone.0014741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, Tucker K, Waitumbi JN, Diggs C, Wittes J, Malkin E, Leach A, Soisson LA, Milman JB, Otieno L, Holland CA, Polhemus M, Remich SA, Ockenhouse CF, Cohen J, Ballou WR, Martin SK, Angov E, Stewart VA, Lyon JA, Heppner DG, Withers MR (2009) Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One 4(3), e4708

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oh SS, Voigt S, Fisher D, Yi SJ, LeRoy PJ, Derick LH, Liu S, Chishti AH (2000) Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Mol Biochem Parasitol 108(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Oleinikov AV, Amos E, Frye IT, Rossnagle E, Mutabingwa TK, Fried M, Duffy PE (2009) High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies. PLoS Pathog 5(4), e1000386. doi:10.1371/journal.ppat.1000386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Otto TD, Rayner JC, Bohme U, Pain A, Spottiswoode N, Sanders M, Quail M, Ollomo B, Renaud F, Thomas AW, Prugnolle F, Conway DJ, Newbold C, Berriman M (2014) Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat Commun 5:4754. doi:10.1038/ncomms5754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pachlatko E, Rusch S, Muller A, Hemphill A, Tilley L, Hanssen E, Beck HP (2010) MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer’s cleft tethers. Mol Microbiol 77(5):1136–1152

    Article  CAS  PubMed  Google Scholar 

  • Pain A, Ferguson DJ, Kai O, Urban BC, Lowe B, Marsh K, Roberts DJ (2001) Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci USA 98(4):1805–1810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, Epiphanio S, Chora A, Rodrigues CD, Gregoire IP, Cunha-Rodrigues M, Portugal S, Soares MP, Mota MM (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 13(6):703–710

    Article  CAS  PubMed  Google Scholar 

  • Pei X, An X, Guo X, Tarnawski M, Coppel R, Mohandas N (2005) Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. J Biol Chem 280(35):31166–31171

    Article  CAS  PubMed  Google Scholar 

  • Pei X, Guo X, Coppel R, Bhattacharjee S, Haldar K, Gratzer W, Mohandas N, An X (2007) The ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum stabilizes spectrin tetramers and suppresses further invasion. Blood 110(3):1036–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Persson KE, Fowkes FJ, McCallum FJ, Gicheru N, Reiling L, Richards JS, Wilson DW, Lopaticki S, Cowman AF, Marsh K, Beeson JG (2013) Erythrocyte-binding antigens of Plasmodium falciparum are targets of human inhibitory antibodies and function to evade naturally acquired immunity. J Immunol 191(2):785–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petter M, Haeggstroem M, Khattab A, Fernandez V, Klinkert M-Q, Wahlgren M (2007) Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol Biochem Parasitol 156(1):51–61. doi:10.1016/j.molbiopara.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  • Petter M, Bonow I, Klinkert MQ (2008) Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS One 3(11), e3779. doi:10.1371/journal.pone.0003779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J, Ralph SA, Cowman AF, Brown GV, Duffy MF (2011) Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog 7(2), e1001292. doi:10.1371/journal.ppat.1001292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petter M, Selvarajah SA, Lee CC, Chin WH, Gupta AP, Bozdech Z, Brown GV, Duffy MF (2013) H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum. Mol Microbiol 87(6):1167–82. doi:10.1111/mmi.12154

    Article  CAS  PubMed  Google Scholar 

  • Pologe LG, Ravetch JV (1986) A chromosomal rearrangement in a P. falciparum histidine-rich protein gene is associated with the knobless phenotype. Nature 322(6078):474–477

    Article  CAS  PubMed  Google Scholar 

  • Pongponratn E, Turner GD, Day NP, Phu NH, Simpson JA, Stepniewska K, Mai NT, Viriyavejakul P, Looareesuwan S, Hien TT, Ferguson DJ, White NJ (2003) An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 69(4):345–359

    PubMed  Google Scholar 

  • Preiser PR, Khan S, Costa FT, Jarra W, Belnoue E, Ogun S, Holder AA, Voza T, Landau I, Snounou G, Renia L (2002) Stage-specific transcription of distinct repertoires of a multigene family during Plasmodium life cycle. Science 295(5553):342–345

    Article  CAS  PubMed  Google Scholar 

  • Proellocks NI, Coppel RL, Waller KL (2010) Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol 26(6):297–304

    Article  CAS  PubMed  Google Scholar 

  • Prommano O, Chaisri U, Turner GD, Wilairatana P, Ferguson DJ, Viriyavejakul P, White NJ, Pongponratn E (2005) A quantitative ultrastructural study of the liver and the spleen in fatal falciparum malaria. Southeast Asian J Trop Med Public Health 36(6):1359–1370

    PubMed  Google Scholar 

  • Rask TS, Hansen DA, Theander TG, Gorm Pedersen A, Lavstsen T (2010) Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer. PLoS Comput Biol 6(9). doi:10.1371/journal.pcbi.1000933

  • Rayner JC, Galinski MR, Ingravallo P, Barnwell JW (2000) Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA 97(17):9648–9653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJ, Cross N, Langer C, Takeo S, Uboldi AD, Thompson JK, Gilson PR, Coppel RL, Siba PM, King CL, Torii M, Chitnis CE, Narum DL, Mueller I, Crabb BS, Cowman AF, Tsuboi T, Beeson JG (2013) Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol 191(2):795–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, Angrisano F, Marapana DS, Rogers KL, Whitchurch CB, Beeson JG, Cowman AF, Ralph SA, Baum J (2011) Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 9(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Roberts DJ, Pain A, Kai O, Kortok M, Marsh K (2000) Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet 355(9213):1427–1428

    Article  CAS  PubMed  Google Scholar 

  • Robinson BA, Welch TL, Smith JD (2003) Widespread functional specialization of Plasmodium falciparum erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome. Mol Microbiol 47(5):1265–1278

    Article  CAS  PubMed  Google Scholar 

  • Rogerson SJ, Tembenu R, Dobano C, Plitt S, Taylor TE, Molyneux ME (1999) Cytoadherence characteristics of Plasmodium falciparum-infected erythrocytes from Malawian children with severe and uncomplicated malaria. Am J Trop Med Hyg 61:467–472

    CAS  PubMed  Google Scholar 

  • Rorick MM, Rask TS, Baskerville EB, Day KP, Pascual M (2013) Homology blocks of Plasmodium falciparum var genes and clinically distinct forms of severe malaria in a local population. BMC Microbiol 13:244. doi:10.1186/1471-2180-13-244

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rottmann M, Lavstsen T, Mugasa JP, Kaestli M, Jensen AT, Muller D, Theander T, Beck HP (2006) Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children. Infect Immun 74(7):3904–3911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, Preiser PR, Bozdech Z, Cortes A (2012) Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res 22(5):925–938. doi:10.1101/gr.129692.111, gr.129692.111 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rowe JA, Moulds JM, Newbold CI, Miller LH (1997) P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388(6639):292–295

    Article  CAS  PubMed  Google Scholar 

  • Rowe JA, Claessens A, Corrigan RA, Arman M (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11, e16. doi:10.1017/S1462399409001082

    Article  PubMed Central  PubMed  Google Scholar 

  • Rug M, Prescott SW, Fernandez KM, Cooke BM, Cowman AF (2006) The role of KAHRP domains in knob formation and cytoadherence of infected human erythrocytes. Blood 108(1):370–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rug M, Cyrklaff M, Mikkonen A, Lemgruber L, Kuelzer S, Sanchez CP, Thompson J, Hanssen E, O’Neill M, Langer C, Lanzer M, Frischknecht F, Maier AG, Cowman AF (2014) Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood 124(23):3459–3468. doi:10.1182/blood-2014-06-583054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE (2010) Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 463(7281):632–636, S0020-7519(06)00397-3 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, Hviid L, Theander TG (2003) Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49(1):179–191

    Article  CAS  PubMed  Google Scholar 

  • Salcedo-Amaya AM, van Driel MA, Alako BT, Trelle MB, van den Elzen AM, Cohen AM, Janssen-Megens EM, van de Vegte-Bolmer M, Selzer RR, Iniguez AL, Green RD, Sauerwein RW, Jensen ON, Stunnenberg HG (2009) Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc Natl Acad Sci USA 106(24):9655–9660. doi:10.1073/pnas.0902515106, 0902515106 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sander AF, Lavstsen T, Rask TS, Lisby M, Salanti A, Fordyce SL, Jespersen JS, Carter R, Deitsch KW, Theander TG, Pedersen AG, Arnot DE (2014) DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families. Nucleic Acids Res 42(4):2270–2281. doi:10.1093/nar/gkt1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanyal S, Egee S, Bouyer G, Perrot S, Safeukui I, Bischoff E, Buffet P, Deitsch KW, Mercereau-Puijalon O, David PH, Templeton TJ, Lavazec C (2012) Plasmodium falciparum STEVOR proteins impact erythrocyte mechanical properties. Blood 119(2):e1–e8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J, Lanzer M (1998) Antigenic variation in malaria: in situ switching, relaxed and mutally exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J 17:5418–5426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber N, Brattig N, Evans J, Tsiri A, Horstmann RD, May J, Klinkert MQ (2006) Cerebral malaria is associated with IgG2 and IgG4 antibody responses to recombinant Plasmodium falciparum RIFIN antigen. Microbes Infect 8(5):1269–1276. doi:10.1016/j.micinf.2005.12.007, S1286-4579(06)00017-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Schreiber N, Khattab A, Petter M, Marks F, Adjei S, Kobbe R, May J, Klinkert MQ (2008) Expression of Plasmodium falciparum 3D7 STEVOR proteins for evaluation of antibody responses following malaria infections in naive infants. Parasitology 135(2):155–167. doi:10.1017/S0031182007003794, S0031182007003794 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sharp S, Lavstsen T, Fivelman QL, Saeed M, McRobert L, Templeton TJ, Jensen AT, Baker DA, Theander TG, Sutherland CJ (2006) Programmed transcription of the var gene family, but not of stevor, in Plasmodium falciparum gametocytes. Eukaryot cell 5(8):1206–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shikani HJ, Freeman BD, Lisanti MP, Weiss LM, Tanowitz HB, Desruisseaux MS (2012) Cerebral malaria: we have come a long way. Am J Pathol 181(5):1484–1492. doi:10.1016/j.ajpath.2012.08.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siau A, Toure FS, Ouwe-Missi-Oukem-Boyer O, Ciceron L, Mahmoudi N, Vaquero C, Froissard P, Bisvigou U, Bisser S, Coppee JY, Bischoff E, David PH, Mazier D (2007) Whole-transcriptome analysis of Plasmodium falciparum field isolates: identification of new pathogenicity factors. J Infect Dis 196(11):1603–1612

    Article  CAS  PubMed  Google Scholar 

  • Silamut K, Phu NH, Whitty C, Turner GDH, Louwrier K, Mai NTH, Simpson JA, Hien TT, White NJ (1999) A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 155:395–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH (1994) Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264(5167):1941–1944

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, Thomas A, Conway DJ (2004) A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363(9414):1017–1024

    Article  PubMed  Google Scholar 

  • Singh SK, Hora R, Belrhali H, Chitnis CE, Sharma A (2006) Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 439(7077):741–744. doi:10.1038/nature04443

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Alam MM, Pal-Bhowmick I, Brzostowski JA, Chitnis CE (2010) Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 6(2), e1000746

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82(1):101–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagen T, Pinches R, Baruch DI, Newbold CI, Miller LH (2000a) Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc Natl Acad Sci USA 97:1766–1771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JD, Subramanian G, Gamain B, Baruch DI, Miller LH (2000b) Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol Biochem Parasitol 110:293–310

    Article  CAS  PubMed  Google Scholar 

  • Smith JD, Rowe JA, Higgins MK, Lavstsen T (2013) Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell Microbiol 15(12):1976–1983. doi:10.1111/cmi.12183

    Article  CAS  PubMed  Google Scholar 

  • Spielmann T, Fergusen DJ, Beck HP (2003) etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite-host cell interface. Mol Biol Cell 14(4):1529–1544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spielmann T, Hawthorne PL, Dixon MW, Hannemann M, Klotz K, Kemp DJ, Klonis N, Tilley L, Trenholme KR, Gardiner DL (2006) A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol Biol Cell 17(8):3613–3624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, Maier AG, Winzeler EA, Cowman AF (2005) Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 309(5739):1384–1387

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, Rennenberg A, Krueger A, Pollok JM, Menard R, Heussler VT (2006) Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313(5791):1287–1290

    Article  CAS  PubMed  Google Scholar 

  • Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82(1):89–100

    Article  CAS  PubMed  Google Scholar 

  • Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JG, Fosiko NG, Lewallen S, Liomba NG, Molyneux ME (2004) Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10(2):143–145

    Article  CAS  PubMed  Google Scholar 

  • Tham WH, Payne PD, Brown GV, Rogerson SJ (2007) Identification of basic transcriptional elements required for rif gene transcription. Int J Parasitol 37(6):605–615. doi:10.1016/j.ijpara.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  • Tham WH, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, Richard D, Corbin JE, Beeson JG, Cowman AF (2010) Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci USA 107(40):17327–17332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiburcio M, Niang M, Deplaine G, Perrot S, Bischoff E, Ndour PA, Silvestrini F, Khattab A, Milon G, David PH, Hardeman M, Vernick KD, Sauerwein RW, Preiser PR, Mercereau-Puijalon O, Buffet P, Alano P, Lavazec C (2012) A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages. Blood 119(24):e172–e180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tolia NH, Enemark EJ, Sim BK, Joshua-Tor L (2005) Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA, Hommel M, Duffy MF, Silva LM, Scherf A, Ivens A, Speed TP, Beeson JG, Cowman AF (2009) Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol 7(4), e84. doi:10.1371/journal.pbio.1000084, 08-PLBI-RA-5273 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Torii M, Adams JH, Miller LH, Aikawa M (1989) Release of merozoite dense granules during erythrocyte invasion by Plasmodium knowlesi. Infect Immun 57(10):3230–3233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trager W, Rozario C, Shio H, Williams J, Perkins ME (1992) Transfer of a dense granule protein of Plasmodium falciparum to the membrane of ring stages and isolation of dense granules. Infect Immun 60(11):4656–4661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Trimnell AR, Kraemer SM, Mukherjee S, Phippard DJ, Janes JH, Flamoe E, Su XZ, Awadalla P, Smith JD (2006) Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol Biochem Parasitol 148(2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Sullivan DJ, Stins MF (2006) Plasmodium falciparum-infected erythrocytes increase intercellular adhesion molecule 1 expression on brain endothelium through NF-kappaB. Infect Immun 74(6):3262–3270. doi:10.1128/IAI.01625-05

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tripathi AK, Sullivan DJ, Stins MF (2007) Plasmodium falciparum-infected erythrocytes decrease the integrity of human blood-brain barrier endothelial cell monolayers. J Infect Dis 195(7):942–950

    Article  PubMed  Google Scholar 

  • Turner GDH, Morrison H, Jones M, Davis TME, Looareesuwan S, Buley ID, Gatter KC, Newbold CI, Pukritayakamee S, Nagachinta B, White NJ, Berendt AR (1994) An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 145:1057–1069

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turner L, Wang CW, Lavstsen T, Mwakalinga SB, Sauerwein RW, Hermsen CC, Theander TG (2011) Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naive volunteers. PLoS One 6(12), e29025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, Magistrado P, Lusingu J, Smith JD, Higgins MK, Theander TG (2013) Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498(7455):502–505. doi:10.1038/nature12216, nature12216 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Udomsangpetch R, Wahlin B, Carlson J, Berzins K, Torii M, Aikawa M, Perlmann P, Wahlgren M (1989) Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J Exp Med 169(5):1835–1840

    Article  CAS  PubMed  Google Scholar 

  • Umbers AJ, Boeuf P, Clapham C, Stanisic DI, Baiwog F, Mueller I, Siba P, King CL, Beeson JG, Glazier J, Rogerson SJ (2011) Placental malaria-associated inflammation disturbs the insulin-like growth factor axis of fetal growth regulation. J Infect Dis 203(4):561–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE (2006) A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 22(11):503–508

    Article  PubMed  CAS  Google Scholar 

  • Volz JC, Bartfai R, Petter M, Langer C, Josling GA, Tsuboi T, Schwach F, Baum J, Rayner JC, Stunnenberg HG, Duffy MF, Cowman AF (2012) PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division. Cell Host Microbe 11(1):7–18. doi:10.1016/j.chom.2011.11.011, S1931-3128(11)00403-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG, Reeder JC, Crabb BS, Cowman AF (2006) A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439(7079):1004–1009

    CAS  PubMed  Google Scholar 

  • Voss TS, Tonkin CJ, Marty AJ, Thompson JK, Healer J, Crabb BS, Cowman AF (2007) Alterations in local chromatin environment are involved in silencing and activation of subtelomeric var genes in Plasmodium falciparum. Mol Microbiol 66(1):139–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waller KL, Cooke BM, Nunomura W, Mohandas N, Coppel RL (1999) Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). J Biol Chem 274(34):23808–23813

    Article  CAS  PubMed  Google Scholar 

  • Wang CW, Magistrado PA, Nielsen MA, Theander TG, Lavstsen T (2008) Preferential transcription of conserved rif genes in two phenotypically distinct Plasmodium falciparum parasite lines. Int J Parasitol. doi:10.1016/j.ijpara.2008.11.014, S0020-7519(08)00480-3 [pii]

    PubMed Central  Google Scholar 

  • Wang CW, Hermsen CC, Sauerwein RW, Arnot DE, Theander TG, Lavstsen T (2009) The Plasmodium falciparum var gene transcription strategy at the onset of blood stage infection in a human volunteer. Parasitol Int 58(4):478–480. doi:10.1016/j.parint.2009.07.004, S1383-5769(09)00076-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ward GE, Miller LH, Dvorak JA (1993) The origin of parasitophorous vacuole membrane lipids in malaria-infected erythrocytes. J Cell Sci 106(Pt 1):237–248

    CAS  PubMed  Google Scholar 

  • Warimwe GM, Keane TM, Fegan G, Musyoki JN, Newton CR, Pain A, Berriman M, Marsh K, Bull PC (2009) Plasmodium falciparum var gene expression is modified by host immunity. Proc Natl Acad Sci USA 106(51):21801–21806. doi:10.1073/pnas.0907590106, 0907590106 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warimwe GM, Fegan G, Musyoki JN, Newton CR, Opiyo M, Githinji G, Andisi C, Menza F, Kitsao B, Marsh K, Bull PC (2012) Prognostic indicators of life-threatening malaria are associated with distinct parasite variant antigen profiles. Sci Transl Med 4(129):129ra145. doi:10.1126/scitranslmed.3003247, 4/129/129ra45 [pii]

    Article  Google Scholar 

  • Waterkeyn JG, Wickham ME, Davern KM, Cooke BM, Coppel RL, Reeder JC, Culvenor JG, Waller RF, Cowman AF (2000) Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J 19(12):2813–2823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber JL (1988) Interspersed repetitive DNA from Plasmodium falciparum. Mol Biochem Parasitol 29(2-3):117–124

    Article  CAS  PubMed  Google Scholar 

  • Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL (2008) Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr Opin Infect Dis 21(5):468–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiser S, Miu J, Ball HJ, Hunt NH (2007) Interferon-gamma synergises with tumour necrosis factor and lymphotoxin-alpha to enhance the mRNA and protein expression of adhesion molecules in mouse brain endothelial cells. Cytokine 37(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • White NJ, Turner GD, Day NP, Dondorp AM (2013) Lethal malaria: Marchiafava and Bignami were right. J Infect Dis 208(2):192–198. doi:10.1093/infdis/jit116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wickert H, Wissing F, Andrews KT, Stich A, Krohne G, Lanzer M (2003) Evidence for trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a complex membrane network. Eur J Cell Biol 82(6):271–284

    Article  CAS  PubMed  Google Scholar 

  • Wickert H, Gottler W, Krohne G, Lanzer M (2004) Maurer’s cleft organization in the cytoplasm of infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur J Cell Biol 83(10):567–582

    Article  PubMed  Google Scholar 

  • Wickham ME, Rug M, Ralph SA, Klonis N, McFadden GI, Tilley L, Cowman AF (2001) Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 20(20):5636–5649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winter G, Kawai S, Haeggstrom M, Kaneko O, von Euler A, Kawazu S, Palm D, Fernandez V, Wahlgren M (2005) SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med 201(11):1853–1863. doi:10.1084/jem.20041392, jem.20041392 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witmer K, Schmid CD, Brancucci NM, Luah YH, Preiser PR, Bozdech Z, Voss TS (2012) Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling. Mol Microbiol 84(2):243–259. doi:10.1111/j.1365-2958.2012.08019.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yalcindag E, Rougeron V, Elguero E, Arnathau C, Durand P, Brisse S, Diancourt L, Aubouy A, Becquart P, D’Alessandro U, Fontenille D, Gamboa D, Maestre A, Menard D, Musset L, Noya O, Veron V, Wide A, Carme B, Legrand E, Chevillon C, Ayala FJ, Renaud F, Prugnolle F (2014) Patterns of selection on Plasmodium falciparum erythrocyte-binding antigens after the colonization of the New World. Mol Ecol 23(8):1979–1993

    Article  CAS  PubMed  Google Scholar 

  • Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, Piera K, Price RN, Duffull SB, Celermajer DS, Anstey NM (2008) Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc Natl Acad Sci USA 105(44):17097–17102. doi:10.1073/pnas.0805782105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Q, Huang Y, Zhang Y, Fang X, Claes A, Duchateau M, Namane A, Lopez-Rubio JJ, Pan W, Scherf A (2011) A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. Cell Host Microbe 10(5):451–463. doi:10.1016/j.chom.2011.09.013, S1931-3128(11)00332-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Siegel TN, Martins RM, Wang F, Cao J, Gao Q, Cheng X, Jiang L, Hon CC, Scheidig-Benatar C, Sakamoto H, Turner L, Jensen AT, Claes A, Guizetti J, Malmquist NA, Scherf A (2014) Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria. Nature 513(7518):431–435. doi:10.1038/nature13468

    Article  CAS  PubMed  Google Scholar 

  • Zilversmit MM, Chase EK, Chen DS, Awadalla P, Day KP, McVean G (2013) Hypervariable antigen genes in malaria have ancient roots. BMC Evol Biol 13:110. doi:10.1186/1471-2148-13-110

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuccala ES, Gout AM, Dekiwadia C, Marapana DS, Angrisano F, Turnbull L, Riglar DT, Rogers KL, Whitchurch CB, Ralph SA, Speed TP, Baum J (2012) Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. PLoS One 7(9), e46160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petter, M., Duffy, M.F. (2015). Antigenic Variation in Plasmodium falciparum . In: Hsu, E., Du Pasquier, L. (eds) Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations. Results and Problems in Cell Differentiation, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-20819-0_3

Download citation

Publish with us

Policies and ethics