Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates

Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 57)


Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.


Major Histocompatibility Complex Rainbow Trout Major Histocompatibility Complex Class Affinity Maturation Infectious Salmon Anemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This article is dedicated to the memory of Steve Kaattari, who pioneered the study of fish B cells and will be missed by fish immunologists after passing away in November 2014.

This work was supported by Institut National de la Recherche Agronomique, by the European Commission under the Work Programme 2012 of the 7th Framework Programme for Research and Technological Development of the European Union (Grant Agreement 311993 TARGETFISH), and by the National Institutes of Health Grant R01GM085207 (to J.O.S.). We acknowledge S. Fillatreau, T. Mora, A. Six, and Dr. G. Wiegertjes for helpful discussions.


  1. Alugupalli KR, Akira S, Lien E, Leong JM (2007) MyD88- and Bruton’s tyrosine kinase-mediated signals are essential for T cell-independent pathogen-specific IgM responses. J Immunol 178:3740–3749PubMedCrossRefGoogle Scholar
  2. Arnesen KR, Mikkelsen H, Schrøder MB, Lund V (2010) Impact of reattaching various Aeromonas salmonicida A-layer proteins on vaccine efficacy in Atlantic cod (Gadus morhua). Vaccine 28:4703–4708Google Scholar
  3. Austbø L, Bergva Aas I, König M et al (2014) Transcriptional response of immune genes in gills and the interbranchial lymphoid tissue of Atlantic salmon challenged with infectious salmon anaemia virus. Dev Comp Immunol 45:107–114PubMedCrossRefGoogle Scholar
  4. Bao Y, Wang T, Guo Y et al (2010) The immunoglobulin gene loci in the teleost Gasterosteus aculeatus. Fish Shellfish Immunol 28:40–48Google Scholar
  5. Barreto VM, Magor BG (2011) Activation-induced cytidine deaminase structure and functions: a species comparative view. Dev Comp Immunol 35:991–1007PubMedCrossRefGoogle Scholar
  6. Barreto V, Meo T, Cumano A (2001) Mice triallelic for the Ig heavy chain locus: implications for VHDJH recombination. J Immunol 166:5638–5645PubMedCrossRefGoogle Scholar
  7. Barreto VM, Pan-Hammarstrom Q, Zhao Y et al (2005) AID from bony fish catalyses call switch recombination. J Exp Med 202:733PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ben-Hamo R, Efroni S (2011) The whole-organism heavy chain B cell repertoire from Zebrafish self-organizes into distinct network features. BMC Syst Biol 5:27PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bernard D, Six A, Rigottier-Gois L et al (2006) Phenotypic and functional similarity of gut intraepithelial and systemic T cells in a teleost fish. J Immunol 176:3942–3949PubMedCrossRefGoogle Scholar
  10. Boudinot P, Boubekeur S, Benmansour A (2001) Rhabdovirus infection induces public and private T cell responses in teleost fish. J Immunol 167:6202–6209PubMedCrossRefGoogle Scholar
  11. Boudinot P, Boubekeur S, Benmansour A (2002) Primary structure and complementarity-determining region (CDR) 3 spectratyping of rainbow trout TCRbeta transcripts identify ten Vbeta families with Vbeta6 displaying unusual CDR2 and differently spliced forms. J Immunol 169:6244–6252PubMedCrossRefGoogle Scholar
  12. Boudinot P, Bernard D, Boubekeur S et al (2004) The glycoprotein of a fish rhabdovirus profiles the virus-specific T-cell repertoire in rainbow trout. J Gen Virol 85:3099–3108PubMedCrossRefGoogle Scholar
  13. Brodeur PH, Wortis HH (1980) Regulation of thymus-independent responses: unresponsiveness to a second challenge of TNP-Ficoll is mediated by hapten-specific antibodies. J Immunol 125:1499–1505PubMedGoogle Scholar
  14. Burnet FM (1957) A modification of Jerne’s theory of antibody production using the concept of clonal selection. Aust J Sci 20:67–69Google Scholar
  15. Castro R, Jouneau L, Pham H-P et al (2013) Teleost fish mount complex clonal IgM and IgT responses in spleen upon systemic viral infection. PLoS Pathog 9, e1003098PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cohn M (1994) The wisdom of hindsight. Annu Rev Immunol 12:1–62PubMedCrossRefGoogle Scholar
  17. Costa G, Danz H, Kataria P, Bromage E (2012) A holistic view of the dynamisms of teleost IgM: a case study of Streptococcus iniae vaccinated rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 36:298–305Google Scholar
  18. Daggfeldt A, Bengtén E, Pilström L (1993) A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38:199–209Google Scholar
  19. Danilova N, Bussmann J, Jekosch K, Steiner LA (2005) The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 6:295–302PubMedCrossRefGoogle Scholar
  20. Das S, Hirano M, Tako R et al (2012) Evolutionary genomics of immunoglobulin-encoding Loci in vertebrates. Curr Genomics 13:95–102PubMedCentralPubMedCrossRefGoogle Scholar
  21. De Togni P, Goellner J, Ruddle NH et al (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707PubMedCrossRefGoogle Scholar
  22. Defrance T, Taillardet M, Genestier L (2011) T cell-independent B cell memory. Curr Opin Immunol 23:330–336PubMedCrossRefGoogle Scholar
  23. DeKosky BJ, Ippolito GC, Deschner RP et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol 31:166–169PubMedCentralPubMedCrossRefGoogle Scholar
  24. Diaz M, Velez J, Singh M et al (1999) Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol 11:825–833PubMedCrossRefGoogle Scholar
  25. Diaz M, Flajnik MF, Klinman N (2001) Evolution and the molecular basis of somatic hypermutation of antigen receptor genes. Philos Trans R Soc Lond B Biol Sci 356:67–72PubMedCentralPubMedCrossRefGoogle Scholar
  26. Dijkstra JM, Grimholt U, Leong J et al (2013) Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evol Biol 13:260PubMedCentralPubMedCrossRefGoogle Scholar
  27. Dooley H, Stanfield RL, Brady RA, Flajnik MF (2006) First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci USA 103:1846–1851PubMedCentralPubMedCrossRefGoogle Scholar
  28. Du Pasquier L, Hsu E (1983) Immunoglobulin expression in diploid and polyploid interspecies hybrid of Xenopus: evidence for allelic exclusion. Eur J Immunol 13:585–590Google Scholar
  29. Dunon D, Schwager J, Dangy JP et al (1994) T cell migration during development: homing is not related to TCR V beta 1 repertoire selection. EMBO J 13:808–815PubMedCentralPubMedGoogle Scholar
  30. Eason DD, Litman RT, Luer CA et al (2004) Expression of individual immunoglobulin genes occurs in an unusual system consisting of multiple independent loci. Eur J Immunol 34:2551–2558PubMedCrossRefGoogle Scholar
  31. Espelid S, Rødseth O, Jørgensen T et al (1991) Vaccination experiments and studies of the humoral immune responses in cod, Gadus morhuaL., to four strains of monoclonal-defined Vibrio anguillarum. J Fish Dis 14:185–197Google Scholar
  32. Findly RC, Zhao X, Noe J et al (2013) B cell memory following infection and challenge of channel catfish with Ichthyophthirius multifiliis. Dev Comp Immunol 39:302–311PubMedCrossRefGoogle Scholar
  33. Flajnik M, Du Pasquier L (2013) Evolution of the immune system. In: Paul W (ed) Fundamental Immunology, 7th edn. Wolters Kluwer & Lippincott Williams & Wilkins, New York, pp 67–128Google Scholar
  34. Francés V, Pandrau-Garcia D, Guret C et al (1994) A surrogate 15 kDa JC kappa protein is expressed in combination with mu heavy chain by human B cell precursors. EMBO J 13:5937–5943PubMedCentralPubMedGoogle Scholar
  35. Gambón-Deza F, Sánchez-Espinel C, Magadán-Mompó S (2010) Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes. Dev Comp Immunol 34:114–122Google Scholar
  36. Gross GG, Schwartz VL, Stevens C et al (1994) Distribution of dominant T cell receptor beta chains in human intestinal mucosa. J Exp Med 180:1337–1344PubMedCrossRefGoogle Scholar
  37. Gudmundsdóttir S, Magnadóttir B, Björnsdóttir B et al (2009) Specific and natural antibody response of cod juveniles vaccinated against Vibrio anguillarum. Fish Shellfish Immunol 26:619–624Google Scholar
  38. Haire RN, Rast JP, Litman RT, Litman GW (2000) Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor alpha in zebrafish. Immunogenetics 51:915–923PubMedCrossRefGoogle Scholar
  39. Hansen J, Landis E, Phillips R (2005) Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. Proc Natl Acad Sci 102:6919–6924PubMedCentralPubMedCrossRefGoogle Scholar
  40. Haugarvoll E, Bjerkås I, Nowak BF et al (2008) Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J Anat 213(2):202–209PubMedCentralPubMedCrossRefGoogle Scholar
  41. Helfman G, Collette B, Facey D, Bowen B (2010) The diversity of fishes, 2nd edn. Wiley Blackwell, HobokenGoogle Scholar
  42. Herrin BR, Cooper MD (2010) Alternative adaptive immunity in jawless vertebrates. J Immunol 185:1367–1374PubMedCrossRefGoogle Scholar
  43. Hirano M, Das S, Guo P, Cooper MD (2011) The evolution of adaptive immunity in vertebrates. Adv Immunol 109:125–157PubMedCrossRefGoogle Scholar
  44. Hofmann J, Greter M, Du Pasquier L, Becher B (2010) B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends Immunol 31:144–153PubMedCrossRefGoogle Scholar
  45. Holtmeier W, Hennemann A, Caspary WF (2000) IgA and IgM V(H) repertoires in human colon: evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 119:1253–1266PubMedCrossRefGoogle Scholar
  46. Hsu E (2009) V(D)J recombination: of mice and sharks. Adv Exp Med Biol 650:166–179PubMedCrossRefGoogle Scholar
  47. Hsu E, Criscitiello MF (2006) Diverse Immunoglobulin Light Chain Organizations in Fish Retain Potential to Revise B Cell Receptor Specificities. J Immunol 177(4):2452–2462PubMedCentralPubMedCrossRefGoogle Scholar
  48. Hsu E, Pulham N, Rumfelt LL, Flajnik MF (2006) The plasticity of immunoglobulin gene systems in evolution. Immunol Rev 210:8–26PubMedCentralPubMedCrossRefGoogle Scholar
  49. Huetz F, Carlsson L, Tornberg UC, Holmberg D (1993) V-region directed selection in differentiating B lymphocytes. EMBO J 12:1819–1826PubMedCentralPubMedGoogle Scholar
  50. Israelsson O, Petersson A, Bengtén E et al (1991) Immunoglobulin concentration in Atlantic cod, Gadus morhua L., serum and -reactivity between anti-cod-antibodies and immunoglobulins from other species. J Fish Biol 39:265–278Google Scholar
  51. Jerne NK (1955) The natural selection theory of antibody formation. Proc Natl Acad Sci USA 41:849PubMedCentralPubMedCrossRefGoogle Scholar
  52. Jerne N (1971) What precedes clonal selection? Ontogeny of acquired immunity. In Proceedings of CIBA Foundation Symposium, CIBA, Amsterdam, pp 1–15Google Scholar
  53. Jhunjhunwala S, van Zelm MC, Peak MM, Murre C (2009) Chromatin architecture and the generation of antigen receptor diversity. Cell 138:435–448PubMedCentralPubMedCrossRefGoogle Scholar
  54. Jiang N, Weinstein JA, Penland L et al (2011) Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc Natl Acad Sci USA 108:5348–5353PubMedCentralPubMedCrossRefGoogle Scholar
  55. Kaattari SL, Zhang HL, Khor IW et al (2002) Affinity maturation in trout: clonal dominance of high affinity antibodies late in the immune response. Dev Comp Immunol 26:191–200PubMedCrossRefGoogle Scholar
  56. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695PubMedCrossRefGoogle Scholar
  57. Koppang EO, Fischer U, Moore L et al (2010) Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. J Anat 217:728–739PubMedCentralPubMedCrossRefGoogle Scholar
  58. Kurath G, Garver KA, Corbeil S et al (2006) Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. Vaccine 24:345–354PubMedCrossRefGoogle Scholar
  59. Lathrop SK, Bloom SM, Rao SM et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254PubMedCentralPubMedCrossRefGoogle Scholar
  60. Lindner C, Wahl B, Föhse L et al (2012) Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med 209:365–377PubMedCentralPubMedCrossRefGoogle Scholar
  61. Ma C, Ye J, Kaattari SL (2013) Differential compartmentalization of memory B cells versus plasma cells in salmonid fish. Eur J Immunol 43:360–370PubMedCrossRefGoogle Scholar
  62. Magadán-Mompó S, Sánchez-Espinel C, Gambón-Deza F (2011) Immunoglobulin heavy chains in medaka (Oryzias latipes). BMC Evol Biol 11:165Google Scholar
  63. Magadán-Mompó S, Zimmerman AM, Sánchez-Espinel C, Gambón-Deza F (2013) Immunoglobulin light chains in medaka (Oryzias latipes). Immunogenetics 65:387–396Google Scholar
  64. Magnadottir B, Jonsdottir H, Helgason S et al (1999) Humoral immune parameters in Atlantic cod (Gadus morhua L.), II: the effects of size and gender under different environmental conditions. Comp Biochem Physiol 122:181–188Google Scholar
  65. Malecek K, Lee V, Feng W et al (2008) Immunoglobulin heavy chain exclusion in the shark. PLoS Biol 6, e157PubMedCentralPubMedCrossRefGoogle Scholar
  66. Malmstrøm M, Jentoft S, Gregers TF, Jakobsen KS (2013) Unraveling the evolution of the Atlantic cod’s (Gadus morhua L.) alternative immune strategy. PLoS One 8, e74004Google Scholar
  67. Marianes AE, Zimmerman M, Zimmerman AM (2011) Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology 132:240–255PubMedCentralPubMedCrossRefGoogle Scholar
  68. Mårtensson IL, Keenan RA, Licence S (2007) The pre-B-cell receptor. Curr Opin Immunol 19:137–142PubMedCrossRefGoogle Scholar
  69. Matsumoto M, Lo SFF, Carruthers CJJ et al (1996) Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 382:462–466PubMedCrossRefGoogle Scholar
  70. Matsunaga T, Rahman A (1998) What brought the adaptive immune system to vertebrates? The jaw hypothesis and the seahorse. Immunol Rev 166:177–186PubMedCrossRefGoogle Scholar
  71. Mikkelsen H, Lund V, Larsen R, Seppola M (2011) Vibriosis vaccines based on various sero-subgroups of Vibrio anguillarum O2 induce specific protection in Atlantic cod (Gadus morhua L.) juveniles. Fish Shellfish Immunol 30:330–339Google Scholar
  72. Miller NW, Clem LW (1984) Microsystem for in vitro primary and secondary immunization of channel catfish (Ictalurus punctatus) leukocytes with hapten-carrier conjugates. J Immunol Methods 72:367–379Google Scholar
  73. Miller NW, Sizemore RC, Clem LW (1985) Phylogeny of lymphocyte heterogeneity: the cellular requirements for in vitro antibody responses of channel catfish leukocytes. J Immunol 134:2884–2888PubMedGoogle Scholar
  74. Mora T, Walczak AM, Bialek W, Callan CG (2010) Maximum entropy models for antibody diversity. Proc Natl Acad Sci USA 107:5405–5410PubMedCentralPubMedCrossRefGoogle Scholar
  75. Nakanishi T, Toda H, Shibasaki Y, Somamoto T (2011) Cytotoxic T cells in teleost fish. Dev Comp Immunol 35:1317–1323PubMedCrossRefGoogle Scholar
  76. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, HobokenGoogle Scholar
  77. Obukhanych TV, Nussenzweig MC (2006) T-independent type II immune responses generate memory B cells. J Exp Med 203:305–310PubMedCentralPubMedCrossRefGoogle Scholar
  78. Oltz EM (2001) Regulation of antigen receptor gene assembly in lymphocytes. Immunol Res 23:121–133PubMedCrossRefGoogle Scholar
  79. Persson AC, Stet RJ, Pilström L (1999) Characterization of MHC class I and beta(2)-microglobulin sequences in Atlantic cod reveals an unusually high number of expressed class I genes. Immunogenetics 50:49–59PubMedCrossRefGoogle Scholar
  80. Petit J, Stange-Thomann N, Mauceli E et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957Google Scholar
  81. Pilström L, Petersson A (1991) Isolation and partial characterization of immunoglobulin from cod (Gadus morhua L.). Dev Comp Immunol 15:143–152Google Scholar
  82. Pilstrom L, Warr G, Stromberg S (2005) Why is the antibody response of Atlantic cod so poor? The search for a genetic explanation. Fish Sci 71:961–971CrossRefGoogle Scholar
  83. Rangel R, McKeller MR, Sims-Mourtada JC et al (2005) Assembly of the kappa preB receptor requires a V kappa-like protein encoded by a germline transcript. J Biol Chem 280:17807–17814PubMedCrossRefGoogle Scholar
  84. Rast JP, Litman GW (1998) Towards understanding the evolutionary origins and early diversification of rearranging antigen receptors. Immunol Rev 166:79–86PubMedCrossRefGoogle Scholar
  85. Rast JP, Amemiya CT, Litman RT et al (1998) Distinct patterns of IgH structure and organization in a divergent lineage of chrondrichthyan fishes. Immunogenetics 47:234–245PubMedCrossRefGoogle Scholar
  86. Ratcliffe MJ (2006) Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev Comp Immunol 30:101–118PubMedCrossRefGoogle Scholar
  87. Regnault A, Cumano A, Vassalli P et al (1994) Oligoclonal repertoire of the CD8 alpha alpha and the CD8 alpha beta TCR-alpha/beta murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J Exp Med 180:1345–1358PubMedCrossRefGoogle Scholar
  88. Rombout JH, Abelli L, Picchietti S et al (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626PubMedCrossRefGoogle Scholar
  89. Romer A (1962) The vertebrate body, 3rd edn. Saunders WB Co., PhiladelphiaGoogle Scholar
  90. Salinas I, Zhang Y-A, Sunyer JO (2011) Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol 35:1346–1365PubMedCentralPubMedCrossRefGoogle Scholar
  91. Sammut B, Du Pasquier L, Ducoroy P et al (1999) Axolotl MHC architecture and polymorphism. Eur J Immunol 29:2897–2907PubMedCrossRefGoogle Scholar
  92. Saunders HL, Oko ALAL, Scott ANAN et al (2010) The cellular context of AID expressing cells in fish lymphoid tissues. Dev Comp Immunol 34:669PubMedCrossRefGoogle Scholar
  93. Schröder AE, Greiner A, Seyfert C, Berek C (1996) Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 93:221–225PubMedCentralPubMedCrossRefGoogle Scholar
  94. Schrøder MB, Ellingsen T, Mikkelsen H et al (2009) Comparison of antibody responses in Atlantic cod (Gadus morhuaL.) to Vibrio anguillarum, Aeromonas salmonicida and Francisella sp. Fish Shellfish Immunol 27:112–119Google Scholar
  95. Shapiro D, Adkison M, Kaattari S (1996) Antibody affinity analysis using the ELISA. In: Lefkovitz I Jr (ed) Immunology methods manual: comprehensive sourcebook of techniques. Academic, New York, p 2353e65Google Scholar
  96. Shlomchik MJ, Weisel F (2012) Germinal center selection and the development of memory B and plasma cells. Immunol Rev 247:52–63PubMedCrossRefGoogle Scholar
  97. Six A, Mariotti-Ferrandiz ME, Chaara W et al (2013) The past, present, and future of immune repertoire biology – the rise of next-generation repertoire analysis. Front Immunol 4:413PubMedCentralPubMedCrossRefGoogle Scholar
  98. Smelty P, Marchal C, Renard R et al (2010) Identification of the pre-T-cell receptor alpha chain in nonmammalian vertebrates challenges the structure-function of the molecule. Proc Natl Acad Sci USA 107:19991–19996PubMedCentralPubMedCrossRefGoogle Scholar
  99. Somamoto T, Okamoto N, Nakanishi T et al (2009) In vitro generation of viral-antigen dependent cytotoxic T-cells from ginbuna crucian carp, Carassius auratus langsdorfii. Virology 389:26–33PubMedCrossRefGoogle Scholar
  100. Somamoto T, Kondo M, Nakanishi T, Nakao M (2014) Helper function of CD4+ lymphocytes in antiviral immunity in ginbuna crucian carp, Carassius auratus langsdorfii. Dev Comp Immunol 44:111–115Google Scholar
  101. Star B, Jentoft S (2012) Why does the immune system of Atlantic cod lack MHC II? Bioessays 34:648–651PubMedCentralPubMedCrossRefGoogle Scholar
  102. Star B, Nederbragt AJ, Jentoft S et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210PubMedCentralPubMedCrossRefGoogle Scholar
  103. Stavnezer J, Amemiya CT (2004) Evolution of isotype switching. Semin Immunol 16:257–275PubMedCrossRefGoogle Scholar
  104. Stoel M, Jiang H, van Diemen CC et al (2005) Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J Immunol 174:1046–1054PubMedCrossRefGoogle Scholar
  105. Tacchi L, Musharrafieh R, Larragoite ET et al (2014) Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat Commun 5:5205PubMedCentralPubMedCrossRefGoogle Scholar
  106. Takizawa F, Dijkstra JM, Kotterba P et al (2011) The expression of CD8α discriminates distinct T cell subsets in teleost fish. Dev Comp Immunol 35:752–763PubMedCrossRefGoogle Scholar
  107. Tan Y-C, Blum LK, Kongpachith S et al (2014) High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin Immunol 151:55–65PubMedCentralPubMedCrossRefGoogle Scholar
  108. Tanaka Y, Nakasone H, Yamazaki R et al (2010) Single-cell analysis of T-cell receptor repertoire of HTLV-1 Tax-specific cytotoxic T cells in allogeneic transplant recipients with adult T-cell leukemia/lymphoma. Cancer Res 70:6181–6192PubMedCrossRefGoogle Scholar
  109. Tatner MF (1986) The ontogeny of humoral immunity in rainbow trout, Salmo gairdneri. Vet Immunol Immunopathol 12:93–105Google Scholar
  110. Toda H, Saito Y, Koike T et al (2011) Conservation of characteristics and functions of CD4 positive lymphocytes in a teleost fish. Dev Comp Immunol 35:650–660PubMedCrossRefGoogle Scholar
  111. Tournefier A, Laurens V, Chapusot C et al (1998) Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev 166:259–277PubMedCrossRefGoogle Scholar
  112. Utke K, Kock H, Schuetze H et al (2008) Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus. Dev Comp Immunol 32:239–252PubMedCrossRefGoogle Scholar
  113. Van Der Aa LM, Levraud J, Yahmi M et al (2009) A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. BMC Biol 23:7Google Scholar
  114. Wei M, Shinkura R, Doi Y et al (2011) Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol 12:264–270PubMedCrossRefGoogle Scholar
  115. Weill JC, Cocea L, Reynaud C-A (2002) Allelic exclusion: lesson from GALT species. Semin Immunol 14:213–215, discussion 227–228PubMedCrossRefGoogle Scholar
  116. Weinstein JA, Jiang N, White RA et al (2009) High-throughput sequencing of the zebrafish antibody repertoire. Science 324:807–811PubMedCentralPubMedCrossRefGoogle Scholar
  117. Williams AM, Bland PW, Phillips AC et al (2004) Intestinal alpha beta T cells differentiate and rearrange antigen receptor genes in situ in the human infant. J Immunol 173:7190–7199PubMedCrossRefGoogle Scholar
  118. Wilson M, Hsu E, Marcuz A et al (1992) What limits affinity maturation of antibodies in Xenopus-the rate of somatic mutation or the ability to select mutants? EMBO J 11:4337–4347Google Scholar
  119. Xu Z, Parra D, Gómez D et al (2013) Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci USA 110:13097–13102PubMedCentralPubMedCrossRefGoogle Scholar
  120. Yang F, Waldbieser GC, Lobb CJ (2006) The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. J Immunol 176:1655PubMedCrossRefGoogle Scholar
  121. Yasuike M, De Boer J, Von Schalburg KR et al (2010) Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 11:486Google Scholar
  122. Ye J, Kaattari IM, Kaattari SL (2011) The differential dynamics of antibody subpopulation expression during affinity maturation in a teleost. Fish Shellfish Immunol 30:372–377PubMedCrossRefGoogle Scholar
  123. Zhang Y, Salinas I, Li J et al (2010) IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11:827–835PubMedCentralPubMedCrossRefGoogle Scholar
  124. Zhu C, Feng W, Weedon J et al (2011) The multiple shark Ig chain genes rearrange and hypermutate autonomously. J Immunol 187:2492PubMedCentralPubMedCrossRefGoogle Scholar
  125. Zielinski CE, Corti D, Mele F et al (2011) Dissecting the human immunologic memory for pathogens. Immunol Rev 240:40–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Virologie et Immunologie Moléculaires, Institut National de la Recherche AgronomiqueJouy-en-JosasFrance
  2. 2.School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations