Neural Adaptation to a Working Memory Task: A Concurrent EEG-fNIRS Study

  • Yichuan Liu
  • Hasan Ayaz
  • Banu Onaral
  • Patricia A. Shewokis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)

Abstract

Simultaneously recorded electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) measures from sixteen subjects were used to assess neural correlates of a letter based n-back working memory task. We found that EEG alpha power increased and prefrontal cortical oxygenation decreased with increased practice time for the high memory load condition (2-back), suggesting lower brain activation and a tendency toward the ‘idle’ state. The cortical oxygenation changes for the low memory load conditions (0-back and 1-back) changed very little throughout the training session which the behavioral scores showed high accuracy and a ceiling effect. No significant effect of practice time were found for theta power or the behavioral performance measures.

Keywords

Multimodality EEG fNIRS Working memory Mental workload Practice time Adaptation 

References

  1. 1.
    Parasuraman, R., Christensen, J., Grafton, S.: Neuroergonomics: the brain in action and at work. NeuroImage 59, 1–3 (2012)CrossRefGoogle Scholar
  2. 2.
    Gevins, A., Smith, M.E., Leong, H., McEvoy, L., Whitfield, S., Du, R., Rush, G.: Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Hum. Factors: J. Hum. Factors Ergon. Soc. 40, 79–91 (1998)CrossRefGoogle Scholar
  3. 3.
    Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., Schultz, T.: Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 7, 935 (2014)CrossRefGoogle Scholar
  4. 4.
    Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain monitoring for operator training and mental workload assessment. Neuroimage 59, 36–47 (2012)CrossRefGoogle Scholar
  5. 5.
    Mehta, R.K., Parasuraman, R.: Neuroergonomics: a review of applications to physical and cognitive work. Front. Hum. Neurosci. 7, 889 (2013)CrossRefGoogle Scholar
  6. 6.
    Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., Parasuraman, R.: Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: Empirical examples and a technological development. Front. Hum. Neurosci. 7, 1–13 (2013)CrossRefGoogle Scholar
  7. 7.
    Grimes, D., Tan, D.S., Hudson, S.E., Shenoy, P., Rao, R.P.N.: Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 835–844. ACM, Florence, Italy (2008)Google Scholar
  8. 8.
    Muhl, C., Jeunet, C., Lotte, F.: EEG-based workload estimation across affective contexts. Front. Neurosci. 8, 114 (2014)Google Scholar
  9. 9.
    Kelly, A.M.C., Garavan, H.: Human functional neuroimaging of brain changes associated with practice. Cereb. Cortex 15, 1089–1102 (2005)CrossRefGoogle Scholar
  10. 10.
    Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7, 374–385 (1997)CrossRefGoogle Scholar
  11. 11.
    Ayaz, H., Cakir, M.P., Izzetoglu, K., Curtin, A., Shewokis, P.A., Bunce, S.C., Onaral, B.: Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging. In: 2012 IEEE Aerospace Conference, pp. 1–11 (2012)Google Scholar
  12. 12.
    Cui, X., Bray, S., Bryant, D.M., Glover, G.H., Reiss, A.L.: A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54, 2808–2821 (2011)CrossRefGoogle Scholar
  13. 13.
    Ayaz, H., Izzetoglu, M., Bunce, S., Heiman-Patterson, T., Onaral, B.: Detecting cognitive activity related hemodynamic signal for brain computer interface using functional near infrared spectroscopy, pp. 342–345. IEEE (2007)Google Scholar
  14. 14.
    Huster, R.J., Debener, S., Eichele, T., Herrmann, C.S.: Methods for simultaneous EEG-fMRI: an introductory review. J. Neurosci. 32, 6053–6060 (2012)CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Ayaz, H., Curtin, A., Onaral, B., Shewokis, P.A.: Towards a hybrid P300-based BCI using simultaneous fNIR and EEG. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2013. LNCS, vol. 8027, pp. 335–344. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Müller, K.-R., Blankertz, B.: Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59, 519–529 (2012)CrossRefGoogle Scholar
  17. 17.
    Coffey, E.B.J., Brouwer, A.-M., van Erp, J.B.F.: Measuring workload using a combination of electroencephalography and near infrared spectroscopy. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 56, pp. 1822−1826 (2012)Google Scholar
  18. 18.
    Merzagora, A.C., Izzetoglu, M., Polikar, R., Weisser, V., Onaral, B., Schultheis, M.T.: Functional near-infrared spectroscopy and electroencephalography: a multimodal imaging approach. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 417–426. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Ayaz, H., Shewokis, P.A., Curtin, A., Izzetoglu, M., Izzetoglu, K., Onaral, B.: Using mazesuite and functional near infrared spectroscopy to study learning in spatial navigation. J. Visualized Exp.: JoVE, 3443 (2011). doi:10.3791/3443
  20. 20.
    Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)CrossRefGoogle Scholar
  21. 21.
    Cope, M., Delpy, D.T.: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Compu. 26, 289–294 (1988)CrossRefGoogle Scholar
  22. 22.
    Gentili, R.J., Shewokis, P.A., Ayaz, H., Contreras-Vidal, J.L.: Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Front. Hum. Neurosci. 7, 277 (2013)CrossRefGoogle Scholar
  23. 23.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995)MathSciNetGoogle Scholar
  24. 24.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  25. 25.
    Buschkuehl, M., Jaeggi, S.M., Jonides, J.: Neuronal effects following working memory training. Dev. Cogn. Neurosci. 2 (Supplement 1), S167–S179 (2012)CrossRefGoogle Scholar
  26. 26.
    Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Plann. 90, 227–244 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yichuan Liu
    • 1
    • 2
  • Hasan Ayaz
    • 1
    • 2
  • Banu Onaral
    • 1
    • 2
  • Patricia A. Shewokis
    • 1
    • 2
    • 3
    • 4
  1. 1.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) CollaborativeDrexel UniversityPhiladelphiaUSA
  3. 3.Nutrition Sciences Department, College of Nursing and Health ProfessionsDrexel UniversityPhiladelphiaUSA
  4. 4.Department of Surgery, College of MedicineDrexel UniversityPhiladelphiaUSA

Personalised recommendations