Skip to main content

Non-conventional Generation and Transformation of Response

  • Chapter
Introduction to Fluorescence Sensing
  • 1507 Accesses

Abstract

In addition to optical excitation, there are different possibilities to achieve the excited states of molecular and nanoscale luminophores in chemical and biochemical reactions (chemiluminescence and bioluminescence) and reactions at electrode (electroluminescence and electrochemiluminescence). Radioactive light source can also be used for excitation, generating radioluminescence. Excitation can also be provided by simultaneous absorption of two photons or by application of evanescent wave. Reporting can be provided by stimulated emission and laser action and, even more, by direct electron transfer to conducting surface. Plasmonic effect can be used for dramatic enhancement of fluorescence. All that expands the possibilities in applications of fluorescence sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Pratx G, Bazalova M, Lei X (2014) X-Ray luminescence and X-Ray fluorescence computed tomography: new molecular imaging modalities. Access, IEEE 2:1051-1061. doi:10.1109/access.2014.2353041

  • Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002

    Article  PubMed  CAS  Google Scholar 

  • Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067

    Article  CAS  PubMed  Google Scholar 

  • Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128(13):4206–4207

    Article  CAS  PubMed  Google Scholar 

  • Aslan K, Malyn SN, Bector G, Geddes CD (2007a) Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform. Analyst 132(11):1122–1129

    Article  CAS  PubMed  Google Scholar 

  • Aslan K, Malyn SN, Geddes CD (2007b) Angular-dependent metal-enhanced fluorescence from silver colloid-deposited films: opportunity for angular-ratiometric surface assays. Analyst 132(11):1112–1121

    Article  CAS  PubMed  Google Scholar 

  • Aslan K, Malyn SN, Geddes CD (2007c) Microwave-accelerated surface plasmon-cCoupled directional luminescence: application to fast and sensitive assays in buffer, human serum and whole blood. J Immunol Methods 323(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Baj S, Krawczyk T (2007) Chemiluminescence detection of organic peroxides in a two-phase system. Anal Chim Acta 585(1):147–153

    Article  CAS  PubMed  Google Scholar 

  • Basiruddin S, Maity AR, Saha A, Jana NR (2011) Gold-nanorod-based hybrid cellular probe with multifunctional properties. J Phys Chem C 115(40):19612–19620

    Article  CAS  Google Scholar 

  • Belfield KD, Bondar MV, Hernandez FE, Przhonska OV, Yao S (2006) Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly. Chem Phys 320(2):118–124

    Article  CAS  Google Scholar 

  • Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15(21):14266–14274

    Article  CAS  PubMed  Google Scholar 

  • Cade NI, Ritman-Meer T, Kwaka K, Richards D (2009) The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering. Nanotechnology 20(28):285201

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319. doi:10.1021/ja073527l

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chowdhury MH, Aslan K, Malyn SN, Lakowicz JR, Geddes CD (2006) Metal-enhanced chemiluminescence: radiating plasmons generated from chemically induced electronic excited states. Appl Phys Lett 88(17)

    Google Scholar 

  • Collini E (2012) Cooperative effects to enhance two-photon absorption efficiency: intra- versus inter-molecular approach. Phys Chem Chem Phys 14(11):3725–3736. doi:10.1039/c2cp24030k

    Article  CAS  PubMed  Google Scholar 

  • Couture M, Zhao SS, Masson J-F (2013) Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 15(27):11190–11216. doi:10.1039/C3CP50281C

    Article  CAS  PubMed  Google Scholar 

  • Darvill D, Centeno A, Xie F (2013) Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Phys Chem Chem Phys 15(38):15709–15726

    Article  CAS  PubMed  Google Scholar 

  • Das A, Das A, Chang LB, Lai CS, Lin RM, Chu FC, Lin YH, Chow L, Jeng MJ (2013) GaN thin film based light addressable potentiometric sensor for pH sensing application. Appl Phys Express 6(3):036601

    Article  CAS  Google Scholar 

  • Deng S, Ju H (2013) Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 138(1):43–61

    Article  CAS  PubMed  Google Scholar 

  • Dennany L, Forster RJ, Rusling JF (2003) Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films. J Am Chem Soc 125(17):5213–5218

    Article  CAS  PubMed  Google Scholar 

  • Dothager RS, Goiffon RJ, Jackson E, Harpstrite S, Piwnica-Worms D (2010) Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PLoS One 5(10):e13300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dragan AI, Albrecht MT, Pavlovic R, Keane-Myers AM, Geddes CD (2012) Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence. Anal Biochem 425(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Dvoynenko MM, Wang J-K (2007) Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering. Opt Lett 32(24):3552–3554

    Article  CAS  PubMed  Google Scholar 

  • Dvoynenko M, Kazantseva Z, Strelchuk V, Kolomys O, Venger E, Wang J-K (2010) Molecular ruler based on concurrent measurements of enhanced Raman scattering and fluorescence. Opt Lett 35(22):3808–3810

    Article  CAS  PubMed  Google Scholar 

  • Ekgasit S, Thammacharoen C, Yu F, Knoll W (2004) Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies. Anal Chem 76(8):2210–2219

    Article  CAS  PubMed  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Fahnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54(4):531–559

    Article  CAS  PubMed  Google Scholar 

  • Fine T, Leskinen P, Isobe T, Shiraishi H, Morita M, Marks RS, Virta M (2006) Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosens Bioelectron 21(12):2263–2269

    Article  CAS  PubMed  Google Scholar 

  • Fort E, Grésillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41(1):013001

    Article  CAS  Google Scholar 

  • Frangioni JV (2006) Self-illuminating quantum dots light the way. Nat Biotechnol 24(3):326–328

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Przhonska OV, Padilha LA, Hagan DJ, Van Stryland EW, Belfield KD, Bondar MV, Slominsky YL, Kachkovski AD (2006) Two-photon anisotropy: analytical description and molecular modeling for symmetrical and asymmetrical organic dyes. Chem Phys 321(3):257–268

    Article  CAS  Google Scholar 

  • Fu J, Padilha LA, Hagan DJ, Van Stryland EW, Przhonska OV, Bondar MV, Slominsky YL, Kachkovski AD (2007) Molecular structure – two-photon absorption property relations in polymethine dyes. J Opt Soc Am B 24(1):56–66

    Article  CAS  Google Scholar 

  • Gao H, Wang W, Wang Z, Han J, Fu Z (2014) Amorphous carbon nanoparticle used as novel resonance energy transfer acceptor for chemiluminescent immunoassay of transferrin. Anal Chim Acta 819:102–107

    Article  CAS  PubMed  Google Scholar 

  • Giorgetti E, Cicchi S, Muniz-Miranda M, Margheri G, Del Rosso T, Giusti A, Rindi A, Ghini G, Sottini S, Marcelli A, Foggi P (2009) Forster resonance energy transfer (FRET) with a donor-acceptor system adsorbed on silver or gold nanoisland films. Phys Chem Chem Phys 11(42):9798–9803

    Article  CAS  PubMed  Google Scholar 

  • Gratzel M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Philos Transact A Math Phys Eng Sci 365(1853):993–1005

    Article  CAS  Google Scholar 

  • Gryczynski I, Malicka J, Shen YB, Gryczynski Z, Lakowicz JR (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106(9):2191–2195

    Article  CAS  Google Scholar 

  • Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WCW, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. J Phys Chem B 109(3):1088–1093

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Qiu T, Zhang W, Chu PK (2011) Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res Lett 6(1):1–12

    Article  CAS  Google Scholar 

  • Guzelturk B, Kelestemur Y, Olutas M, Delikanli S, Demir HV (2014) Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 8(7):6599–6605

    Article  CAS  PubMed  Google Scholar 

  • Hanninen P, Soini A, Meltola N, Soini J, Soukka J, Soini E (2000) A new microvolume technique for bioaffinity assays using two-photon excitation. Nat Biotechnol 18(5):548–550

    Article  CAS  PubMed  Google Scholar 

  • He GS, Zheng Q, Prasad PN, Grote JG, Hopkins FK (2006) Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex. Opt Lett 31(3):359–361

    Article  CAS  PubMed  Google Scholar 

  • Holthoff WG, Tehan EC, Bukowski RM, Kent N, MacCraith BD, Bright FV (2005) Radioluminescent light source for the development of optical sensor arrays. Anal Chem 77(2):718–723

    Article  CAS  PubMed  Google Scholar 

  • Höppener C, Novotny L (2012) Exploiting the light–metal interaction for biomolecular sensing and imaging. Q Rev Biophys 45(02):209–255

    Article  PubMed  CAS  Google Scholar 

  • Howes PD, Rana S, Stevens MM (2014) Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev 43(11):3835–3853

    Article  CAS  PubMed  Google Scholar 

  • Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45(31):5140–5143

    Article  CAS  Google Scholar 

  • Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3(11):654–657

    Article  CAS  Google Scholar 

  • Kulmala S, Suomi J (2003) Current status of modern analytical luminescence methods. Anal Chim Acta 500(1–2):21–69

    Article  CAS  Google Scholar 

  • Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337(2):171–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63:65–87

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Nakaya K, Hayashi T, Hara M (2009) Quantitative study of the gold-enhanced fluorescence of CdSe/ZnS nanocrystals as a function of distance using an AFM probe. Phys Chem Chem Phys 11(21):4403–4409

    Article  CAS  PubMed  Google Scholar 

  • Li BX, He YZ (2007) Simultaneous determination of glucose, fructose and lactose in food samples using a continuous-flow chemiluminescence method with the aid of artificial neural networks. Luminescence 22(4):317–325

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yang P, Wang P, Huang X, Wang L (2007) CdS nanocrystal induced chemiluminescence: reaction mechanism and applications. Nanotechnology 18(22):225602

    Article  CAS  Google Scholar 

  • Li Q, Zhang L, Li J, Lu C (2011) Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. TrAC Trends Anal Chem 30(2):401–413

    Article  CAS  Google Scholar 

  • Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140(2):386–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Xue W, Chen H, Lin J-M (2012) Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem Commun 48(7):1051–1053

    Article  Google Scholar 

  • Liu X, Tan W (1999) A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal Chem 71(22):5054–5059

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z (2010) Radiation‐luminescence‐excited quantum dots for in vivo multiplexed optical imaging. Small 6(10):1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13(6):2436–2441. doi:10.1021/nl400368v

    Article  CAS  PubMed  Google Scholar 

  • Méndez E, Greffet J-J, Carminati R (1997) On the equivalence between the illumination and collection modes of the scanning near-field optical microscope. Opt commun 142(1):7–13

    Article  Google Scholar 

  • Merlen A, Lagugné-Labarthet F, Harté E (2010) Surface-enhanced raman and fluorescence spectroscopy of dye molecules deposited on nanostructured gold surfaces. J Phys Chem C 114(30):12878–12884

    Article  CAS  Google Scholar 

  • Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553

    Article  CAS  PubMed  Google Scholar 

  • Miao WJ, Bard AJ (2003) Electrogenerated chemluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using Tris(2,2’-bipyridyl)ruthenium(II) labels. Anal Chem 75(21):5825–5834

    Article  CAS  PubMed  Google Scholar 

  • Michelini E, Mirasoli M, Karp M, Virta M, Roda A (2004) Development of a bioluminescence resonance energy-transfer assay for estrogen-like compound in vivo monitoring. Anal Chem 76(23):7069–7076

    Article  CAS  PubMed  Google Scholar 

  • Ming T, Chen H, Jiang R, Li Q, Wang J (2012) Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 3(2):191–202

    Article  CAS  Google Scholar 

  • Mishra H, Mali BL, Karolin J, Dragan AI, Geddes CD (2013) Experimental and theoretical study of the distance dependence of metal-enhanced fluorescence, phosphorescence and delayed fluorescence in a single system. Phys Chem Chem Phys 15(45):19538–19544

    Article  CAS  PubMed  Google Scholar 

  • Moreshead WV, Przhonska OV, Bondar MV, Kachkovski AD, Nayyar IH, Masunov AE, Woodward AW, Belfield KD (2013) Design of a new optical material with broad spectrum linear and two-photon absorption and solvatochromism. J Phys Chem Lett 117(44):23133–23147

    Article  CAS  Google Scholar 

  • Naczynski DJ, Sun C, Türkcan S, Jenkins C, Koh AL, Ikeda D, Pratx G, Xing L (2015) X-ray induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett 15:96–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann T, Johansson ML, Kambhampati D, Knoll W (2002) Surface-plasmon fluorescence spectroscopy. Adv Funct Mater 12(9):575–586

    Article  CAS  Google Scholar 

  • Paley MA, Prescher JA (2014) Bioluminescence: a versatile technique for imaging cellular and molecular features. Med Chem Commun 5(3):255–267

    Article  CAS  Google Scholar 

  • Papkovsky DB, O’Riordan T, Soini A (2000) Phosphorescent porphyrin probes in biosensors and sensitive bioassays. Biochem Soc Trans 28:74–77

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Vak D, Noh YY, Lim B, Kim DY (2007) Surface plasmon enhanced photoluminescence of conjugated polymers. Appl Phys Lett 90(16):161107

    Article  CAS  Google Scholar 

  • Paulmurugan R, Gambhir SS (2007) Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein-protein interactions. Anal Chem 79(6):2346–2353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peter LM (2007) Dye-sensitized nanocrystalline solar cells. Phys Chem Chem Phys 9(21):2630–2642

    Article  CAS  PubMed  Google Scholar 

  • Przhonska OV, Scott Webster S, Padilha LA, Hu H, Kachkovski AD, Hagan DJ, Stryland EW V (2010) Two-photon absorption in near-IR conjugated molecules: design strategy and structure-property relations. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Fundamentals and molecular design, vol 8, Springer series on fluorescence. Springer, Heidelberg pp 105–148

    Google Scholar 

  • Pu S-C, Yang M-J, Hsu C-C, Lai C-W, Hsieh C-C, Lin SH, Cheng Y-M, Chou P-T (2006) The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. Small 2(11):1308–1313. doi:10.1002/smll.200600157

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Zhao S, Huang Y, Jiang J, Liu Y-M (2013) A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Biosens Bioelectron 46:119–123

    Article  CAS  PubMed  Google Scholar 

  • Ray K, Badugu R, Lakowicz JR (2007) Sulforhodamine adsorbed Langmuir-Blodgett layers on silver island films: effect of probe distance on the metal-enhanced fluorescence. J Phys Chem C 111(19):7091–7097

    Article  CAS  Google Scholar 

  • Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22(6):295–303

    Article  CAS  PubMed  Google Scholar 

  • Rose A, Zhu ZG, Madigan CF, Swager TM, Bulovic V (2005) Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434(7035):876–879

    Article  CAS  PubMed  Google Scholar 

  • Sabanayagam CR, Lakowicz JR (2007) Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Res 35(2):e13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scherf U, Riechel S, Lemmer U, Mahrt R (2001) Conjugated polymers: lasing and stimulated emission. Curr Opin Solid State Mater Sci 5(2):143–154

    Article  CAS  Google Scholar 

  • Seidel M, Niessner R (2014) Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 406:5589–5612

    Article  CAS  PubMed  Google Scholar 

  • She C, Fedin I, Dolzhnikov DS, Demortière A, Schaller RD, Pelton M, Talapin DV (2014) Low-threshold stimulated emission using colloidal quantum wells. Nano Lett 14(5):2772–2777

    Article  CAS  PubMed  Google Scholar 

  • So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429

    Article  CAS  PubMed  Google Scholar 

  • So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24(3):339–343

    Article  CAS  PubMed  Google Scholar 

  • Somers RC, Bawendi MG, Nocera DG (2007) CdSe nanocrystal based chem-/bio-sensors. Chem Soc Rev 36(4):579–591

    Article  CAS  PubMed  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Lv Y (2014) Graphene and graphene oxides: recent advances in chemiluminescence and electrochemiluminescence. RSC Advances 4(55):29324–29339

    Google Scholar 

  • Sudheendra L, Das GK, Li C, Stark D, Cena J, Cherry S, Kennedy IM (2014) NaGdF4: Eu3+ Nanoparticles for enhanced X-ray excited optical imaging. Chem Mater 26(5):1881–1888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun X, Huang X, Guo J, Zhu W, Ding Y, Niu G, Wang A, Kiesewetter DO, Wang ZL, Sun S (2014) Self-illuminating 64Cu-Doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc 136(5):1706–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suomi J, Kulmala S (2011) Hot electron-induced electrogenerated chemiluminescence. In: Reviews in fluorescence 2009. Springer: New York, pp 47–73

    Google Scholar 

  • Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20(12):2470–2487

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Su Y, Yang N, Zhang L, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem 86(9):4528–4535

    Article  CAS  PubMed  Google Scholar 

  • Thorek DL, Robertson R, Bacchus WA, Hahn J, Rothberg J, Beattie BJ, Grimm J (2012) Cerenkov imaging-a new modality for molecular imaging. Am J Nucl Med Mol Imaging 2(2):163

    PubMed Central  PubMed  Google Scholar 

  • Tokuyama H, Nakamura M (2005) Acceleration of reaction by microwave irradiation. J Synth Org Chem Jpn 63(5):523–538

    Article  CAS  Google Scholar 

  • Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18(1):91–95

    Article  CAS  Google Scholar 

  • Venkatanarayanan A, Crowley K, Lestini E, Keyes TE, Rusling JF, Forster RJ (2012) High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosens Bioelectron 31(1):233–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Li J, Liu B, Hu J, Yao X, Li J (2005) Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect. J Phys Chem B 109(49):23304–23311

    Article  CAS  PubMed  Google Scholar 

  • Webster S, Fu J, Padilha LA, Przhonska OV, Hagan DJ, Van Stryland EW, Bondar MV, Slominsky YL, Kachkovski AD (2008) Comparison of nonlinear absorption in three similar dyes: polymethine, squaraine and tetraone. Chem Phys 348(1):143–151

    Article  CAS  Google Scholar 

  • Werner CF, Yoshinobu T, Miyamoto K-I, Schoening MJ, Wagner T (2014) Semiconductor-based sensors for imaging of chemical processes. In: Sensors and measuring systems 2014; 17. ITG/GMA Symposium; Proceedings of, 2014. VDE, pp 1–5

    Google Scholar 

  • Wu C, Szymanski C, Cain Z, McNeill J (2007) Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc 129(43):12904–12905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu C, Bronder T, Poghossian A, Werner CF (2014) Schoening MJ DNA-hybridization detection using light-addressable potentiometric sensor modified with gold layer. In: Sensors and measuring systems 2014; 17. ITG/GMA Symposium; Proceedings of, 2014a. VDE, pp 1–4

    Google Scholar 

  • Wu N, Dacres H, Anderson A, Trowell SC, Zhu Y (2014b) Comparison of static and microfluidic protease assays using modified bioluminescence resonance energy transfer chemistry. PLoS One 9(2), e88399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao-Hong Z, Lan-Hua L, Wei-Qi X, Bao-Dong S, Jian-Wu S, Miao H, Han-Chang S (2014) A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol a in water samples. Sci Rep 4:4572. doi:10.1038/srep04572

  • Xie X, He X, Song Z (2007) A sensitive chemiluminescence procedure for the determination of carbon monoxide with myoglobin-luminol chemiluminescence system. Appl Spectrosc 61(7):706–710

    Article  CAS  PubMed  Google Scholar 

  • Xu SL, Cui H (2007) Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 22(2):77–87

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96(1):151–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu Y, Cai H, Liu QJ, Qin LF, Wang LJ, Wang P (2006) A novel structure of LAPS array for cell-based biosensor. Rare Metal Mater Eng 35:51–54

    Google Scholar 

  • Yagai S, Kinoshita T, Higashi M, Kishikawa K, Nakanishi T, Karatsu T, Kitamura A (2007) Diversification of self-organized architectures in supramolecular dye assemblies. J Am Chem Soc 129(43):13277–13287

    Article  CAS  PubMed  Google Scholar 

  • Yakovleva J, Davidsson R, Bengtsson M, Laurell T, Emneus J (2003) Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection. Biosens Bioelectron 19(1):21–34

    Article  CAS  PubMed  Google Scholar 

  • Yashchuk VM, Gusak VV, Drnytruk IM, Prokopets VM, Kudrya VY, Losytskyy MY, Tokar VP, Gumenyuk YO, Yarmoluk SM, Kovalska VB, Balanda AO, Kryvorotenko DV (2007) Two-photon excited luminescent styryl dyes as probes for the DNA detection and imaging. Photostability and phototoxic influence on DNA. Mol Cryst Liq Cryst 467:325–338

    Article  CAS  Google Scholar 

  • Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications – II. Experimental characterization. Anal Biochem 262(2):157–176

    Article  CAS  PubMed  Google Scholar 

  • Yoshinobu T, Iwasaki H, Ui Y, Furuichi K, Ermolenko Y, Mourzina Y, Wagner T, Nather N, Schoning MJ (2005) The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods 37(1):94–102

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhang Z, Shi W, Eremin SA, Shen J (2006a) Development of a chemiluminescent ELISA for determining chloramphenicol in chicken muscle. J Agric Food Chem 54(16):5718–5722

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006b) Metal-enhanced phosphorescence: Interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110(49):25108–25114

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Aslan K, Previte MJR, Geddes CD (2007) Metal-enhanced superoxide generation: a consequence of plasmon-enhanced triplet yields. Appl Phys Lett 91(2):023114

    Google Scholar 

  • Zhang W, Zhao Y, Ha D, Cai W, Wang P (2012) Light-addressable potentiometric sensor based on precise light intensity modulation for eliminating measurement error caused by light source. Sensors and Actuators A: Physical 185(0):139–144. doi: http://dx.doi.org/10.1016/j.sna.2012.07.012

  • Zu YB, Ding ZF, Zhou JF, Lee YM, Bard AJ (2001) Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal Chem 73(10):2153–2156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2015). Non-conventional Generation and Transformation of Response. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-20780-3_10

Download citation

Publish with us

Policies and ethics