Skip to main content

Abstract

Booming of sensor technologies is a response to a strong demand in society. As a result, almost every physical principle and technique that can detect interactions between molecules, particles and interfaces was suggested and tested for application in sensing. In this Chapter we provide a short survey of basic strategies in molecular sensing and try to determine the role of those of them that are based on fluorescence detection. Some of them are of rather general nature and others are specific for fluorescence technique. They include (a) application of labeled targets in fluorescence assays, (b) competitor displacement assays, (c) sandwich assays, (d) catalytic biosensing and (e) direct reagent-independent sensing. Finally, the reader will find the section “Sensing and thinking” with the list of questions and problems addressed to the readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschuh D, Oncul S, Demchenko AP (2006) Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 19(6):459–477

    Article  CAS  PubMed  Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  PubMed  Google Scholar 

  • Arugula MA, Simonian A (2014) Novel trends in affinity biosensors: current challenges and perspectives. Meas Sci Technol 25(3):032001

    Article  Google Scholar 

  • Ballerstadt R, Polak A, Beuhler A, Frye J (2004) In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring. Biosens Bioelectron 19(8):905–914

    Article  CAS  PubMed  Google Scholar 

  • Banala S, Arts R, Aper SJ, Merkx M (2013) No washing, less waiting: engineering biomolecular reporters for single-step antibody detection in solution. Org Biomol Chem 11(44):7642–7649

    Article  CAS  PubMed  Google Scholar 

  • Battiston FM, Ramseyer JP, Lang HP, Baller MK, Gerber C, Gimzewski JK, Meyer E, Guntherodt HJ (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens Actuat B Chem 77(1–2):122–131

    Article  CAS  Google Scholar 

  • Brune M, Hunter JL, Corrie JET, Webb MR (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33:8262–8271

    Article  CAS  PubMed  Google Scholar 

  • Chinnayelka S, McShane MJ (2004) Resonance energy transfer nanobiosensors based on affinity binding between apo-enzyme and its substrate. Biomacromolecules 5(5):1657–1661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334(1–2):41–69

    Article  PubMed  Google Scholar 

  • de Castro MDL, Herrera MC (2003) Enzyme inhibition-based biosensors and biosensing systems: questionable analytical devices. Biosens Bioelectron 18(2–3):279–294

    Article  Google Scholar 

  • de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  • Demchenko AP (2001) Recognition between flexible protein molecules: induced and assisted folding. J Mol Recognit 14(1):42–61

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (ed.) (2010a) Advanced Fluorescence Reporters in Chemistry and Biology I: fundamentals and molecular design. Springer Series on Fluorescence, vol. 8. Springer Berlin Heidelberg doi:10.1007/978-3-642-04702-2

  • Demchenko AP (ed.) (2010b) Advanced Fluorescence Reporters in Chemistry and Biology II: molecular constructions, polymers and nanoparticles. Springer Series on Fluorescence, vol. 9. Springer Berlin Heidelberg doi:10.1007/978-3-642-04701-5

  • Demchenko AP (ed.) (2011) Advanced Fluorescence Reporters in Chemistry and Biology III: applications in sensing and imaging. Springer Series on Fluorescence, vol. 10. Springer Berlin Heidelberg doi:10.1007/978-3-642-18035-4

  • Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struct Biol 14(4):495–504

    Article  CAS  PubMed  Google Scholar 

  • Enander K, Choulier L, Olsson AL, Yushchenko DA, Kanmert D, Klymchenko AS, Demchenko AP, Mely Y, Altschuh D (2008) A peptide-based, ratiometric biosensor construct for direct fluorescence detection of a protein analyte. Bioconjug Chem 19(9):1864–1870

    Article  CAS  PubMed  Google Scholar 

  • Ercelen S, Klymchenko AS, Mely Y, Demchenko AP (2005) The binding of novel two-color fluorescence probe FA to serum albumins of different species. Int J Biol Macromol 35(5):231–242

    Article  CAS  PubMed  Google Scholar 

  • Freeman WM, Robertson DJ, Vrana KE (2000) Fundamentals of DNA hybridization arrays for gene expression analysis. Biotechniques 29(5):1042–+

    Google Scholar 

  • Galbán J, Sanz-Vicente I, Ortega E, del Barrio M, de Marcos S (2012) Reagentless fluorescent biosensors based on proteins for continuous monitoring systems. Anal Bioanal Chem 402(10):3039–3054

    Article  PubMed  Google Scholar 

  • Gauglitz G (2005) Direct optical sensors: principles and selected applications. Anal Bioanal Chem 381(1):141–155

    Article  CAS  PubMed  Google Scholar 

  • Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33(22):6739–6749

    Article  CAS  PubMed  Google Scholar 

  • Goldman ER, Anderson GP, Lebedev N, Lingerfelt BM, Winter PT, Patterson CH, Mauro JM (2003) Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement immunoassay. Anal Bioanal Chem 375(4):471–475

    CAS  PubMed  Google Scholar 

  • Gopinath SC, Tang T-H, Citartan M, Chen Y, Lakshmipriya T (2014) Current aspects in immunosensors. Biosens Bioelectron 57:292–302

    Article  CAS  PubMed  Google Scholar 

  • Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  PubMed  Google Scholar 

  • Homola J, Vaisocherova H, Dostalek J, Piliarik M (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Jeong HS, Choi SM, Kim HW, Park JW, Park HN, Park SM, Jang SK, Rhee YM, Kim BH (2013) Fluorescent peptide indicator displacement assay for monitoring interactions between RNA and RNA binding proteins. Mol Biosyst 9(5):948–951

    Article  CAS  PubMed  Google Scholar 

  • Kellner R, Mermet J-M, Otto M, Valcarcei M, Widmer HM (2004) Analytical chemistry. Wiley-VCH, New York

    Google Scholar 

  • Kodadek T (2001) Protein microarrays: prospects and problems. Chem Biol 8(2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Kodadek T (2002) Development of protein-detecting microarrays and related devices. Trends Biochem Sci 27(6):295–300

    Article  CAS  PubMed  Google Scholar 

  • Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3(10):791–801

    Article  CAS  PubMed  Google Scholar 

  • Lange K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    Article  PubMed  Google Scholar 

  • Liu YS, Ugaz VM, Rogers WJ, Mannan MS, Saraf SR (2005) Development of an advanced nanocalorimetry system for material characterization. J Loss Prev Process Ind 18(3):139–144

    Article  Google Scholar 

  • Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors – principles and applications to clinical chemistry. Clin Chim Acta 314(1–2):1–26

    Article  CAS  PubMed  Google Scholar 

  • MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485):1760–1763

    CAS  PubMed  Google Scholar 

  • Makhlynets OV, Korendovych IV (2014) Design of catalytically amplified sensors for small molecules. Biomolecules 4(2):402–418

    Article  PubMed Central  PubMed  Google Scholar 

  • Marquette CA, Blum LJ (2006) State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron 21(8):1424–1433

    Article  CAS  PubMed  Google Scholar 

  • McHugh TM (1994) Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes. Methods Cell Biol 42 Pt B:575–595

    Article  CAS  PubMed  Google Scholar 

  • Mendoza LG, McQuary P, Mongan A, Gangadharan R, Brignac S, Eggers M (1999) High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 27(4):778–+

    Google Scholar 

  • Meng Y, High K, Antonello J, Washabaugh MW, Zhao QJ (2005) Enhanced sensitivity and precision in an enzyme-linked immunosorbent assay with fluorogenic substrates compared with commonly used chromogenic substrates. Anal Biochem 345(2):227–236

    Article  CAS  PubMed  Google Scholar 

  • Mock DM, Lankford G, Horowitz P (1988) A study of the interaction of avidin with 2-anilinonaphthalene-6-sulfonic acid (2,6 Ans) as a probe of the biotin binding-site. Clin Res 36(6):A895

    Google Scholar 

  • Moschou EA, Bachas LG, Daunert S, Deo SK (2006) Hinge-motion binding proteins: unraveling their analytical potential. Anal Chem 78(19):6692–6700

    Article  CAS  Google Scholar 

  • Navani NK, Li YF (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10(3):272–281

    Article  CAS  PubMed  Google Scholar 

  • Nutiu R, Li YF (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chem Eur J 10(8):1868–1876

    Article  CAS  PubMed  Google Scholar 

  • Palecek E (2005) Electroactivity of proteins and its possibilities in biomedicine and proteomics, chap 19. In: Palecek E, Scheller F, Wang J (eds) Electrochemistry of nucleic acids and proteins. Towards electrochemical sensors for genomics and proteomics. Elsevier, Amsterdam, pp 690–750

    Google Scholar 

  • Palecek E, Jelen F (2005) Electrochemistry of nucleic acids. In: Palecek E, Scheller F, Wang J (eds) Electrochemistry of nucleic acids and proteins. Towards electrochemical sensors for genomics and proteomics. Elsevier, Amsterdam, pp 74–174

    Google Scholar 

  • Piatek AM, Bomble YJ, Wiskur SL, Anslyn EV (2004) Threshold detection using indicator-displacement assays: an application in the analysis of malate in Pinot Noir grapes. J Am Chem Soc 126(19):6072–6077

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005a) Fluorescence-based glucose sensors. Biosens Bioelectron 20(12):2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC, Hussain F, Evans ND, Sachedina N (2005b) In vivo glucose monitoring: the clinical reality and the promise. Biosens Bioelectron 20(10):1897–1902

    Article  CAS  PubMed  Google Scholar 

  • Renard M, Belkadi L, Hugo N, England P, Altschuh D, Bedouelle H (2002) Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. J Mol Biol 318(2):429–442

    Article  CAS  PubMed  Google Scholar 

  • Rich RL, Myszka DG (2006) Survey of the year 2005 commercial optical biosensor literature. J Mol Recognit 19(6):478–534

    Article  CAS  PubMed  Google Scholar 

  • Royzen M, Dai ZH, Canary JW (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127(6):1612–1613

    Article  CAS  PubMed  Google Scholar 

  • Schobel U, Egelhaaf HJ, Brecht A, Oelkrug D, Gauglitz G (1999) New-donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconjug Chem 10(6):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Scrimin P, Prins LJ (2011) Sensing through signal amplification. Chem Soc Rev 40(9):4488–4505

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker DD, Linsley PS (2002) Recent developments in DNA microarrays. Curr Opin Microbiol 5(3):334–337

    Article  CAS  PubMed  Google Scholar 

  • Swartzman EE, Miraglia SJ, Mellentin-Michelotti J, Evangelista L, Yuan PM (1999) A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology. Anal Biochem 271(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Tse WC, Boger DL (2004) A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc Chem Res 37(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Valeur B (2002) Molecular fluorescence. Wiley VCH, Weinheim

    Google Scholar 

  • Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, Weinheim, FRG. doi:10.1002/3527600248.fmatter_indsub

  • Venkatasubbarao S (2004) Microarrays – status and prospects. Trends Biotechnol 22(12):630–637

    Article  CAS  PubMed  Google Scholar 

  • Villaverde A (2003) Allosteric enzymes as biosensors for molecular diagnosis. Febs Letters 554(1–2):169–172

    Article  CAS  PubMed  Google Scholar 

  • Warsinke A, Benkert A, Scheller FW (2000) Electrochemical immunoassays. Fresenius J Anal Chem 366(6–7):622–634

    Article  CAS  PubMed  Google Scholar 

  • Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Teaching old indicators new tricks. Acc Chem Res 34(12):963–972

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Xu C, Hou X (2013) Exploration of displacement reaction/sorption strategies in spectrometric analysis. Appl Spectrosc Rev 48(8):629–653

    Article  Google Scholar 

  • Zhang J, Umemoto S, Nakatani K (2010) Fluorescent indicator displacement assay for ligand − RNA interactions. J Am Chem Soc 132(11):3660–3661

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125(38):11474–11475

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Anslyn EV (2006) Signal amplification by allosteric catalysis. Ang Chem Int Ed 45:1190–1196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2015). Basic Principles. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-20780-3_1

Download citation

Publish with us

Policies and ethics