Skip to main content

Stem Cell Therapy and Orthopedics

  • Chapter
  • 2417 Accesses

Abstract

Stem cells obtained from various sources in the body and during different stages of development form the basis of cellular therapy and are often studied in the field of orthopedic regenerative medicine. Parameters such as potential, source, route of administration, and desired dose of stem cells to be used should be selected according to the type of regeneration, and research and application should be conducted with this in mind. This chapter details the general characteristics of stem cells, sources of stem cells, and the advantages and disadvantages of the various sources of stem cells. Detailed specifications of adult stem cells in the group of mesenchymal stem cells, which have more advantages in the field of orthopedics than other stem cells, are provided. Briefly, induced pluripotent stem cells and tissue engineering studies are discussed and examples of orthopedic studies with stem cells are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McCulloch EA, Till JE (2005) Perspectives on the properties of stem cells. Nat Med 11(10):1026–1028

    Article  CAS  PubMed  Google Scholar 

  2. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168

    Article  CAS  PubMed  Google Scholar 

  3. Thomson JA, Itskovitx-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  4. Baın G, Kıtchens D, Yao M et al (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  PubMed  Google Scholar 

  5. Lıu S, Qu Y, Stewart T et al (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A 97:6126–6131

    Article  PubMed Central  PubMed  Google Scholar 

  6. O’Donoghue K, Fisk NM (2004) Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 18(6):853–857

    Article  PubMed  Google Scholar 

  7. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  PubMed  Google Scholar 

  8. Friedenstein AJ (1980) Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. In: Thienfelder S, Rodt H, Kolb HJ (eds) Immunology of bone marrow transplantation. Springer, Berlin, pp 19–20

    Chapter  Google Scholar 

  9. Aubin JE (1998) Bone stem cells. J Cell Biochem Suppl 30–31:73

    Article  PubMed  Google Scholar 

  10. Pittenger MF, Mackay AM, Beck SC (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143

    Article  CAS  PubMed  Google Scholar 

  11. Docheva D, Popov C, Mutschler W, Schieker M (2007) Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med 11(1):21–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fox JM, Chamberlain G, Ashton BA, Middleton J (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137(6):491–502

    Article  CAS  PubMed  Google Scholar 

  13. Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166(3):585–592

    Article  CAS  PubMed  Google Scholar 

  14. Auffray I, Chevalier S, Froger J, Izac B, Vainchenker W, Gascan H, Coulombel L (1996) Nerve growth factor is involved in the supportive effect by bone marrow-derived stromal cells of the factor-dependent human cell line UT-7. Blood 88:1608–1618

    CAS  PubMed  Google Scholar 

  15. Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, Reiffers J, De Mascarel A, Merlio JP (1999) Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol 154:405–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279

    Article  PubMed  Google Scholar 

  17. Bai L, Caplan A, Lennon D, Miller RH (2007) Mesenchymal stem cell signals regulate neural stem cell fate. Neurochem Res 32:353–362

    Article  CAS  PubMed  Google Scholar 

  18. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087

    Article  CAS  PubMed  Google Scholar 

  19. Jaquet K, Krause KT, Denschel J, Faessler P, Nauerz M, Geidel S, Boczor S, Lange C, Stute N, Zander A, Kuck KH (2005) Reduction of myocardial scar size after implantation of mesenchymal stem cells in rats: what is the mechanism? Stem Cells Dev 14(3):299–309

    Article  PubMed  Google Scholar 

  20. Beier JP, Bitto FF, Lange C, Klumpp D, Arkudas A, Bleiziffer O, Boos A, Horch RE, Kneser U (2011) Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int 35:397–406

    Article  CAS  PubMed  Google Scholar 

  21. Mohsin S, Shams S, Ali Nasir G, Khan M, Javaid Awan S, Khan SN, Riazuddin S (2011) Enhanced hepatic differentiation of mesenchymal stem cells after pretreatment with injured liver tissue. Differentiation 81(1):42–48

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Jia X, Bai K, Gong X, Fan Y (2010) Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 41(7):497–505

    Article  PubMed  Google Scholar 

  23. Asanuma H, Meldrum DR, Meldrum KK (2010) Therapeutic applications of mesenchymal stem cells to repair kidney injury. J Urol 184(1):26–33

    Article  PubMed  Google Scholar 

  24. Song S, Song S, Zhang H, Cuevas J, Sanchez-Ramos J (2007) Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cells Dev 16(5):747–756

    Article  CAS  PubMed  Google Scholar 

  25. Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11(13):3001–3005

    Article  CAS  PubMed  Google Scholar 

  26. Zurita M, Vaquero J (2006) Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation. Neurosci Lett 402(1–2):51–56

    Article  CAS  PubMed  Google Scholar 

  27. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–13

    Google Scholar 

  28. Stappenbeck TS, Miyoshi H (2009) The role of stromal stem cells in tissue regeneration and wound repair. Science 324(5935):1666–1669

    Article  CAS  PubMed  Google Scholar 

  29. Xu F, Shi J, Yu B, Ni W, Wu X, Gu Z (2010) Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol Rep 23(6):1561–1567

    CAS  PubMed  Google Scholar 

  30. Blakemore WF (1977) Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266:68–69

    Article  CAS  PubMed  Google Scholar 

  31. Akiyama Y, Radtke C, Kocsis JD (2002) Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22(15):6623–6630

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhao FQ, Zhang PX, He XJ, Du C, Fu ZG, Zhang DY, Jiang BG (2005) Study on the adoption of Schwann cell phenotype by bone marrow stromal cells in vitro and in vivo. Biomed Environ Sci 18(5):326–333

    PubMed  Google Scholar 

  33. Halabian R, Mohammadi Mohammad H, Salimi M, Amani M, Mohammadi Roushandeh A, Aghaeipour M, Amirizadeh N, Ebrahimi M, Jahanian N, Habibi RM (2010) Genetically engineered mesenchymal stem cells stably expressing green fluorescent protein. Iran J Basic Med Sci 13(2 (45)):24–30

    CAS  Google Scholar 

  34. Metzele R, Alt C, Bai X, Yan Y, Zhang Z, Pan Z, Coleman M, Vykoukal J, Song YH, Alt E (2011) Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes. FASEB J 25:830–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gangrade N, Price JC (1991) Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsul 8:185–202

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Shen W, Hua J, Lei A, Lv C, Wang H, Yang C, Gao Z, Dou Z (2010) Pancreatic Islet-like clusters from bone marrow mesenchymal stem cells of human first-trimester abortus can cure streptozocin-induced mouse diabetes. Rejuvenation Res 13:695–706

    Article  CAS  PubMed  Google Scholar 

  37. Ling X, Marini F, Konopleva M, Schober W, Shi Y, Burks J, Clise-Dwyer K, Wang RY, Zhang W, Yuan X, Lu H, Caldwell L, Andreeff M (2010) Mesenchymal stem cells overexpressing IFN-β inhibit breast cancer growth and metastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenviron 3(1):83–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Google Scholar 

  39. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684

    Article  CAS  PubMed  Google Scholar 

  40. Bilousova G, Jun du H, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29(2):206–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nerem RM (1991) Cellular engineering. Ann Biomed Eng 19:529–545

    Article  CAS  PubMed  Google Scholar 

  42. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  43. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration and transplantation. Instr Course Lect 47:487–504

    CAS  PubMed  Google Scholar 

  44. Bentley G, Greer RB 3rd (1971) Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 230:385–388

    Article  CAS  PubMed  Google Scholar 

  45. Hui JH, Chen F, Thambyah A, Lee EH (2004) Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop 24:427–433

    Article  PubMed  Google Scholar 

  46. Goshima J, Goldberg VM, Caplan AI (1991) Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258

    Article  CAS  PubMed  Google Scholar 

  47. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  CAS  PubMed  Google Scholar 

  48. Bruder SP, Kurth AA, Shea M et al (1998) Bone regeneration by implantation of purified culture-expanded human mesenchymal stem cells. J Orthop Res 16:155–162

    Article  CAS  PubMed  Google Scholar 

  49. Bruder SP, Fink DJ, Caplan AI (1994) Mesencymal stem cells in bone development, bone repair and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  CAS  PubMed  Google Scholar 

  50. Wiesmann HP, Joos U, Meyer U (2004) Biological and biophysical principles in extracorporal bone tissue engineering: part II. Int J Oral Maxillofac Surg 33:523–530

    Article  CAS  PubMed  Google Scholar 

  51. Jullig M, Zhang WV, Stott NS (2004) Gene therapy in orthopaedic surgery: the current status. ANZ J Surg 74:46–54

    Article  PubMed  Google Scholar 

  52. Brown TD, Fu FH, Hanley EN Jr (1981) Comparative assessment of the early mechanical integrity of repaired tendon Achillis ruptures in the rabbit. J Trauma 21:951–957

    Article  CAS  PubMed  Google Scholar 

  53. Awad HA, Boivin GP, Dressler MR et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21:420–431

    Article  CAS  PubMed  Google Scholar 

  54. Allen PR, Denham RA, Swan AV (1984) Late degenerative changes after meniscectomy: factors affecting the knee after operation. J Bone Joint Surg (Br) 66-B:666–671

    Google Scholar 

  55. Peretti GM, Caruso EM, Randolph MA, Zaleske DJ (2001) Meniscal repair using engineered tissue. J Orthop Res 19:278–285

    Article  CAS  PubMed  Google Scholar 

  56. Dutton A, Hui JPP, Lee EH, Goh J (2004) Enhancement of meniscal repair using mesenchymal stem cells in a porcine model. In: Proceedings of 5th combined meeting of the orthopaedic research societies of USA, Canada, Japan & Europe. International combined orthopaedic research societies

    Google Scholar 

  57. Lee EH, Hui JH (2006) The potential of stem cells in orthopaedic surgery. J Bone Joint Surg (Br) 88(7):841–851

    Article  CAS  Google Scholar 

  58. Brisby H, Tao H, Ma DD, Diwan AD (2004) Cell therapy for disc degeneration: potentials and pitfalls. Orthop Clin N Am 35:85–93

    Article  Google Scholar 

  59. Crevensten G, Walsh AJ, Ananthakrishnan D et al (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32:430–434

    Article  PubMed  Google Scholar 

  60. Steinmann JC, Herkowitz HN (1992) Pseudarthrosis of the spine. Clin Orthop 284:80–90

    PubMed  Google Scholar 

  61. Itoh H, Ebara S, Kamimura M et al (1999) Experimental spinal fusion with use of recombinant human bone morphogenetic protein 2. Spine 24:1402–1405

    Article  CAS  PubMed  Google Scholar 

  62. Cui Q, Ming Xiao Z, Balian G, Wang GJ (2001) Comparison of lumbar spine fusion using mixed and closed marrow cells. Spine 26:2305–2310

    Article  CAS  PubMed  Google Scholar 

  63. Barami K, Diaz FG (2000) Cellular transplantation and spinal cord injury. Neurosurgery 47:691–700

    CAS  PubMed  Google Scholar 

  64. Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236

    Article  PubMed Central  PubMed  Google Scholar 

  65. Mizuta T, Benson WM, Foster BK, Paterson DC, Morris LL (1987) Statistical analysis of the incidence of physeal injuries. J Pediatr Orthop 7:518–523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petek Korkusuz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Köse, S., Çetinkaya, D.U., Sharma, G., Kim, T.K., Korkusuz, P., Korkusuz, F. (2016). Stem Cell Therapy and Orthopedics. In: Korkusuz, F. (eds) Musculoskeletal Research and Basic Science. Springer, Cham. https://doi.org/10.1007/978-3-319-20777-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20777-3_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20776-6

  • Online ISBN: 978-3-319-20777-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics