Skip to main content

Interactions of Gold Nanostars with Cells

  • Chapter
Book cover Gold Nanostars

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 1071 Accesses

Abstract

Unique optical properties, chemical stability, ease of synthesis, and wide functionalization possibilities make GNP attractive candidates for use in biomedical research including chemical sensing, biological imaging, drug delivery, and cancer treatment. In particular, the strong two-photon luminescence of GNP coupled to a specific targeting makes them ideal candidates as contrast agents. To this aim, the interaction with cells and their cellular tracking are important issues for successful application of GNP to biomedical purposes. Properties of gold nanoparticles, namely gold nanostars, as contrast agents and interaction of GNS with cells are highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shenoy D et al (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery and delivery. Int J Nanomed 1(1):51–57

    Article  Google Scholar 

  2. Torchilin VP, Lukyanov AN (2003) Peptide and protein drug discovery to and into tumors: challenges and solutions. Drug Discov Today 8:259–266

    Article  Google Scholar 

  3. Marshall E (2000) Gene therapy on trial. Science 288:951–957

    Article  Google Scholar 

  4. Nishikawa M, Hashida M (2002) Nonviral approaches satisfying various requirements for effective in vivo gene therapy. Biol Pharm Bull 25:275–283

    Article  Google Scholar 

  5. Kaneda Y (2004) Biological barriers to gene transfer. In: Amiji MM (ed) Polymeric gene delivery: principles and applications. CRC Press, Boca Ranton, FL, pp 29–41

    Google Scholar 

  6. Huefner A et al (2014) Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes. Methods 68(2):354–363. doi:10.1016/j.ymeth.2014.02.006

    Article  Google Scholar 

  7. Panariti A, Miserocchi G, Rivolta I (2012) The effect of nanoparticles uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 5:87–100

    Google Scholar 

  8. Tkachenko AG et al (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem 15:482–490

    Article  Google Scholar 

  9. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  Google Scholar 

  10. Levi V, Gratton E (2007) Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 48:1–15

    Article  Google Scholar 

  11. Dykman LE, Khlebtsov NG (2014) Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 114:1258–1288

    Article  Google Scholar 

  12. Rong G et al (2008) Resolving sub-diffraction limit encounters in nanoparticles tracking using live cells plasmon coupling microscopy. Nano Lett 8:3386–3393

    Article  Google Scholar 

  13. Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453

    Article  Google Scholar 

  14. Nan XL, Sims PA, Xie XS (2008) Organelle tracking in a living cell with microsecond resolution and nanometer precision. Chem Phys Chem 9:707–712

    Google Scholar 

  15. Ricles LM et al (2014) A dual gold nanoparticles system for mesenchymal stem cell tracking. J Mater Chem B 2:8220–8230

    Article  Google Scholar 

  16. Yuan H et al (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23:075102

    Article  Google Scholar 

  17. Wang DS, Hsu FY, Lin CW (2009) Surface plasmons effects on two photon luminescence of gold nanorods. Opt Express 17:11350–11359

    Article  Google Scholar 

  18. Pollnau M et al (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61:3337–3346

    Article  Google Scholar 

  19. Huang X et al (2010) A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4:5887–5896

    Article  Google Scholar 

  20. Wang H et al (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A 102:15752–15756

    Article  Google Scholar 

  21. Li W et al (2014) In vivo quantitative photoacoustic microscopy of gold nanostars kinetics in mouse organs. Biomed Opt Express 5:2679–2685

    Article  Google Scholar 

  22. Lee CH et al (2009) Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo distribution. Adv Funct Mater 19:7688–7693

    Google Scholar 

  23. Ye S et al (2012) Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy. Biomed Opt Express 3:360–365

    Article  Google Scholar 

  24. Nie L et al (2014) Plasmonic nanostars: in vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 10:1585–1593

    Article  Google Scholar 

  25. Yang L et al (2013) Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. Nanoscale 5:12126

    Article  Google Scholar 

  26. Amie S et al (2007) Gd-loaded liposomes as T1, susceptibility, and CEST agents, all in one. J Am Chem Soc 129:2430–2431

    Article  Google Scholar 

  27. Kim C et al (2011) In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J Mater Chem 21:2841–2844

    Article  Google Scholar 

  28. Raghavan V et al (2014) Gold nanosensitisers for multimodal optical diagnostic imaging and therapy of cancer. J Nanomed Nanotechnol 5:238

    Google Scholar 

  29. Wei Q et al (2009) Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. J Am Chem Soc 131:9728–9734

    Article  Google Scholar 

  30. Yguerabide J, Yguerabide EE (1998) Light scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Anal Biochem 262:137–156

    Article  Google Scholar 

  31. Chen H et al (2013) Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 3:633–649

    Article  Google Scholar 

  32. Yuan H et al (2012) TAT-peptide functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134:11358–11361

    Article  Google Scholar 

  33. Liu Y et al (2015) Plasmonic gold nanostars for multi-modality sensing and diagnostics. Sensors 15:3706–3720

    Article  Google Scholar 

  34. Gao ZB, Zhang LN, Sun YJ (2012) Nanotechnology applied to overcome tumor drug resistance. J Control Release 162:45–55

    Article  Google Scholar 

  35. Yuan H et al (2013) Plasmonic nanoprobes for intracellular sensing and imaging. Anal Bional Chem 405:6165–6180

    Article  Google Scholar 

  36. Navarro JR et al (2012) Synthesis of PEGylated gold nanostars and pyramids for intracellular uptake. Nanotechnology 23:465602

    Article  Google Scholar 

  37. Nergiz SZ et al (2014) Multifunctional hybrid nanoparticles of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy. Appl Mater Interfaces 6:16395–16402

    Article  Google Scholar 

  38. Dam DHM et al (2014) Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Mol Pharm 11:580–587

    Article  Google Scholar 

  39. Zhao F et al (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337

    Article  Google Scholar 

  40. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  Google Scholar 

  41. Coradeghini R et al (2013) Size-dependent toxicity and cell interaction mechanism of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217:205–216

    Article  Google Scholar 

  42. Liu X et al (2013) Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 29:9138–9148

    Article  Google Scholar 

  43. Duan X, Yaping L (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:9–10

    Article  Google Scholar 

  44. Chithrani DB, Ghazani AA, Chan W (2006) Determining the size and shape of gold nanoparticles uptake into mammalian cells. Nano Lett 6:662–668

    Article  Google Scholar 

  45. Dam DH et al (2012) Direct observation of nanoparticles-cancer cell nucleus interactions. ACS Nano 6:3318–3326

    Article  Google Scholar 

  46. Zink D et al (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  Google Scholar 

  47. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach of cancer therapy. J Clin Oncol 23:9408–9421

    Article  Google Scholar 

  48. Dam DH et al (2012) Shining light on nuclear-targeted therapy using gold nanostars constructs. Ther Deliv 3:1263–1267

    Article  Google Scholar 

  49. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  Google Scholar 

  50. Faustino RS et al (2007) Nuclear transport: target for therapy. Clin Pharmacol Ther 81:880–886

    Article  Google Scholar 

  51. Dam DH, Lee RC, Odom TW (2014) Improved in vitro efficacy of gold nanoconstructs by increased loading of G-quadruplex aptamer. Nano Lett 14:2843–2848

    Article  Google Scholar 

  52. Baginskiy I et al (2013) Chitosan-modified stable colloidal gold nanostars for the thermolysis of cancer cells. J Phys Chem 117:2396–2410

    Article  Google Scholar 

  53. Wang L et al (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11:772–780

    Article  Google Scholar 

  54. Wang S et al (2015) Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charged gold nanostars. Small 11:1801–1810

    Article  Google Scholar 

  55. Matiajevic E (ed) (2012) Fine particles in medicine and pharmacy. Springer, London

    Google Scholar 

  56. Xie N, Lin Y, Mazo M, Chiappini C et al (2014) Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale 6:12403–12407

    Article  Google Scholar 

  57. Rodriguez-Lorenzo L et al (2011) Intracellular mapping with SERS-encoded gold nanostars. Intergr Biol 3:922–926

    Article  Google Scholar 

  58. Cho EC et al (2010) The effects of size, shape and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6:517–522

    Article  Google Scholar 

  59. Kereselidze Z (2014) Interaction of gold nanostars with neuronal cells and single negative terahertz metamaterials with barium titanate resonators. Dissertation, The University of Texas at San Antonio

    Google Scholar 

  60. Salinas K et al (2014) Transient extracellular application of gold nanostars increases hippocampal neuronal activity. J Nanobiotechnol 14:31

    Article  Google Scholar 

  61. Rodríguez-Fernández D et al (2014) A protecting group approach toward synthesis of Au–silica Janus nanostars. Chem Comm 50:79–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Chirico .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sironi, L., Borzenkov, M., Collini, M., D’Alfonso, L., Bouzin, M., Chirico, G. (2015). Interactions of Gold Nanostars with Cells. In: Gold Nanostars. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-20768-1_4

Download citation

Publish with us

Policies and ethics