Ariola, Z., Herbelin, H., & Sabry, A. (2007). A proof-theoretic foundation of abortive continuations. Higher-Order and Symbolic Computation, 20, 403–429.
CrossRef
Google Scholar
van Atten, M. (2014). The development of intuitionistic logic. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/spr2014/entries/intuitionistic-logic-development/.
Barnes, J. (1993). Commentary to Aristotle. In Posterior analytics (pp. 81–271). Oxford: Clarendon.
Google Scholar
Bonnay, D. (2002). Le contenu computationnel des preuves: No-counterexemple interpretation et spécification des théorèmes de l’arithmétique. Master thesis, Université Paris 7 Paris Diderot.
Google Scholar
Bonnay, D. (2004). Preuves et jeux sémantiques. Philosophia Scientiæ, 8, 105–123.
CrossRef
Google Scholar
Bonnay, D. (2007). Règles et signification: le point de vue de la logique classique. In J. B. Joinet (Ed.), Logique, dynamique et cognition (pp. 213–231). Paris: Publications de la Sorbonne.
Google Scholar
Boyer, J., & Sandu, G. (2012). Between proof and truth. Synthese, 187, 821–832.
CrossRef
Google Scholar
Coquand, T. (2014). Recursive functions and constructive mathematics. In M. Bourdeau & J. Dubucs (Eds.), Constructivity and computability in historical and philosophical perspective (pp. 159–167). Berlin: Springer.
Google Scholar
Dowek, G., & Miquel, A. (2007). Cut elimination for Zermelo set theory (manuscript).
Google Scholar
Dowek, G., & Werner, B. (2005). Arithmetic as a theory modulo. In J. Giesel (Ed.), Term rewriting and applications (Lecture notes in computer science, Vol. 3467, pp. 423–437). Berlin: Springer.
CrossRef
Google Scholar
Dowek, G., Hardin, T., & Kirchner, C. (2003). Theorem proving modulo. Journal of Automated Reasoning, 31, 33–72.
CrossRef
Google Scholar
Dummett, M. (1963/1978). Realism. In M. Dummett (Ed.), Truth and other enigmas (pp. 145–165). London: Duckworth.
Google Scholar
Dummett, M. (1973/1978). The philosophical basis of intuitionistic logic. In M. Dummett (Ed.), Truth and other enigmas (pp. 215–247). London: Duckworth.
Google Scholar
Dummett, M. (1977). Elements of intuitionism. Oxford: Clarendon.
Google Scholar
Dummett, M. (1991). The logical basis of metaphysics. London: Duckworth.
Google Scholar
Dummett, M. (1998). Truth from the constructive standpoint. Theoria, 64, 122–138.
CrossRef
Google Scholar
Fine, K. (2014). Truth-maker semantics for intuitionistic logic. Journal of Philosophical Logic, 43, 549–577.
CrossRef
Google Scholar
Friedman, H. (1978). Classically and intuitionistically provably recursive functions. In G. H. Müller & D. Scott (Eds.), Higher set theory (pp. 21–27). Berlin: Springer.
CrossRef
Google Scholar
Giannini, P., & Ronchi Della Rocca, S. (1988). Characterization of typings in polymorphic type discipline. In Logic in computer science (pp. 61–70). Los Alamitos: IEEE Computer Society Press.
Google Scholar
Girard, J.-Y. (1989). Geometry of interaction I: Interpretation of system F. In R. Ferro, C. Bonotto, S. Valentini, & A. Zanardo (Eds.), Logic colloquium ’88 (pp. 221–260). Amsterdam: North-Holland.
Google Scholar
Girard, J.-Y. (2001). Locus solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer Science, 11, 301–506.
CrossRef
Google Scholar
Goodman, N. (1970). A theory of constructions equivalent to arithmetic. In A. Kino, J. Myhill, & R. E. Vesley (Eds.), Intuitionism and proof theory (pp. 101–120). Amsterdam: North-Holland.
Google Scholar
Goodman, N. (1973a). The faithfulness of the interpretation of arithmetic in the theory of constructions. The Journal of Symbolic Logic, 38, 453–459.
CrossRef
Google Scholar
Goodman, N. (1973b). The arithmetic theory of constructions. In A. R. D. Mahtias, & H. Rogers (Eds.), Cambridge summer school in mathematical logic (pp. 274–298). Berlin: Springer.
CrossRef
Google Scholar
Guillermo, M., & Miquel, A. (2014). Specifying Peirce’s law in classical realizability. Mathematical Structures in Computer Science. Online first. doi:http://dx.doi.org/10.1017/S0960129514000450.
Google Scholar
Griffin, T. (1990). A formulae-as-types notion of control. In Proceedings of the 17th ACM symposium on principles of programming languages, San Francisco (pp. 47–58). ACM.
Google Scholar
Heyting, A. (1962). After thirty years. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science. Proceedings of the 1960 international congress (pp. 194–197). Stanford: Stanford University Press.
Google Scholar
Hilbert, D. (1926). Über das Unendliche. [On the infinite] English trans. E. Putnam & G. J. Massey. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics: Selected writings (2nd ed., pp. 183–201). Cambridge: Cambridge University Press, 1983.
Google Scholar
Hilbert, D., & Bernays, P. (1934). Grundlagen der Mathematik I. Berlin: Springer.
Google Scholar
Hindley, J. R., & Seldin, J. P. (2008). Lambda-calculus and combinators: An introduction. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Hintikka, J. (1996). The principles of mathematics revisited. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Kleene, S. (1945). On the interpretation of intuitionistic number theory. Journal of Symbolic Logic, 10, 109–124.
CrossRef
Google Scholar
Kleene, S. (1973). Realizability: A retrospective survey. In A. R. D. Mathias & H. Rogers (Eds.), Cambridge summer school in mathematical logic (pp. 95–112). Berlin: Springer.
CrossRef
Google Scholar
Kreisel, G. (1951). On the interpretation of non-finitist proofs. Part I. The Journal of Symbolic Logic, 16(4), 241–267.
Google Scholar
Kreisel, G. (1952). On the interpretation of non-finitist proofs: Part II. Interpretation of number theory. The Journal of Symbolic Logic, 17(1), 43–58.
CrossRef
Google Scholar
Kreisel, G. (1960). Ordinal logics and the characterization of informal notions of proof. In J. A. Todd (Ed.), Proceedings of the international congress of mathematicians, Edinburgh, 14–21 Aug 1958 (pp. 289–299). Cambridge: Cambridge University Press.
Google Scholar
Kreisel, G. (1962). Foundations of intuitionistic logic. In T. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science (pp. 98–210). Stanford: Stanford University Press.
Google Scholar
Kreisel, G. (1965). Mathematical logic. In T. Saaty (Ed.), Lectures on modern mathematics (Vol. 3, pp. 95–195). New York: Wiley.
Google Scholar
Kreisel, G. (1972). Which number theoretic problems can be solved in recursive progressions on \(\Pi _{1}^{1}\)-paths through O? The Journal of Symbolic Logic, 37, 311–334.
CrossRef
Google Scholar
Kreisel, G. (1973). Perspectives in the philosophy of pure mathematics. In P. Suppes, L. Henkin, A. Joja, & G. C. Moisil (Eds.), Logic, methodology and philosophy of science IV: Proceedings of the fourth international congress for logic, methodology and philosophy of science, Bucharest, 1971 (pp. 255–277). Amsterdam: North-Holland.
Google Scholar
Krivine, J.-L. (1994). Classical logic, storage operators and second-order lambda calculus. Annals of Pure and Applied Logic, 68, 53–78.
CrossRef
Google Scholar
Krivine, J.-L. (2003). Dependent choice, ‘quote’ and the clock. Theoretical Computer Science, 308, 259–276.
CrossRef
Google Scholar
Krivine, J.-L. (2009). Realizability in classical logic. Panoramas et Synthèses, 27, 197–229.
Google Scholar
Krivine, J.-L. (2012). Realizability algebras II: New models of ZF + DC. Logical Methods in Computer Science, 8, 1–28.
CrossRef
Google Scholar
Martin-Löf, P. (1970). Notes on constructive mathematics. Stockholm: Almqvist & Wiksell.
Google Scholar
Martin-Löf, P. (1991). A path from logic to metaphysics. In G. Corsi & G. Sambin (Eds.), Atti del Congresso “Nuovi problemi della logica e della filosofia della scienza” (Vol. 2, pp. 141–149). Bologna: CLUEB.
Google Scholar
Miquel, A. (2009a). De la formalisation des preuves à l’extraction de programmes. Habilitation thesis, Université Paris 7 Paris Diderot.
Google Scholar
Miquel, A. (2009b). Classical realizability with forcing and the axiom of countable choice (manuscript).
Google Scholar
Naibo, A. (2013). Le statut dynamique des axiomes. Des preuves aux modèles. PhD thesis, Université Paris 1 Panthéon-Sorbonne.
Google Scholar
Naibo, A., Petrolo, M., & Seiller, T. (2015, in press). On the computational meaning of axioms. In A. Napomuceno, O. Pombo, & J. Redmond (Eds.), Epistemology, knowledge and the impact of interaction. Berlin: Springer.
Google Scholar
Negri, S., & von Plato, J. (2001). Structural proof theory. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Negri, S., & von Plato, J. (2011). Proof analysis: A contribution to Hilbert’s last problem. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Oliva, P., & Streicher, T. (2008). On Krivine’s realizability interpretation of classical second-order arithmetic. Fundamenta Informaticæ, 84, 207–220.
Google Scholar
Parigot, M. (1992). λ μ-calculus: An algorithmic interpretation of classical natural deduction. Logic Programming and Automated Deduction, 624, 190–201.
Google Scholar
Parsons, C. (1972). On n-quantifier induction. The Journal of Symbolic Logic, 37, 466–482.
CrossRef
Google Scholar
Parsons, C. (2008). Mathematical thought and its objects. Cambridge: Cambridge University Press.
Google Scholar
von Plato, J. (2013). Elements of logical reasoning. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Prawitz, D. (1977). Meaning and proofs: On the conflict between classical and intuitionistic logic. Theoria 43, 2–40.
CrossRef
Google Scholar
Prawitz, D. (2006). Meaning approached via proofs. Synthese, 148, 507–524.
CrossRef
Google Scholar
Rieg, L. (2014). On forcing and classical realizability. PhD thesis, École Normale Supérieure de Lyon.
Google Scholar
Schroeder-Heister, P. (1984). A natural extension of natural deduction. Journal of Symbolic Logic, 49, 1284–1300.
CrossRef
Google Scholar
Seiller, T. (2014). Interaction graphs: Graphings. arXiv:1405.6331.
Google Scholar
Seldin, J. (1989). Normalization and excluded middle I. Studia Logica, 48, 193–217.
CrossRef
Google Scholar
Sørensen, M. H., & Urzyczyn, P. (2006). Lectures on the Curry-Howard isomorphism. Amsterdam: Elsevier.
Google Scholar
Sundholm, G. (1983). Constructions, proofs and the meaning of logical constants. Journal of Philosophical Logic, 12, 151–172.
CrossRef
Google Scholar
Sundholm, G. (1986). Proof theory and meaning. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 3, pp. 471–506). Dordrecht: Reidel.
CrossRef
Google Scholar
Sundholm, G. (1994). Vestiges of realism. In B. McGuinness & G. Oliveri (Eds.), The philosophy of Michael Dummett (pp. 137–165). Dordrecht: Kluwer.
CrossRef
Google Scholar
Sundholm, G. (2014). Constructive recursive functions, Church’s thesis, and Brouwer’s theory of the creating subject: Afterthoughts on a Parisian joint session. In M. Bourdeau & J. Dubucs (Eds.), Constructivity and computability in historical and philosophical perspective (pp. 1–35). Berlin: Springer.
Google Scholar
Tait, W. W. (1981). Finitism. The Journal of Philosophy, 78, 524–546.
CrossRef
Google Scholar
Tieszen, R. (1992). What is a proof? In M. Detlefsen (Ed.), Proof, logic and formalization (pp. 57–76). London: Routledge.
Google Scholar
Troelstra, A. S. (1998). Realizability. In S. R. Buss (Ed.), Handbook of proof theory (pp. 407–473). Amsterdam: Elsevier.
CrossRef
Google Scholar
Troelstra, A. S., & van Dalen, D. (1988). Constructivism in mathematics (Vol. 1). Amsterdam: North-Holland.
Google Scholar
Zach, R. (2015). Hilbert’s program. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/spr2015/entries/hilbert-program/.