Skip to main content

Sphingolipids as Mediators of Breast Cancer Progression, Metastasis, Response and Resistance to Chemotherapy

  • Chapter
  • 871 Accesses

Abstract

Approximately 250,000 people are diagnosed with breast cancer and 40,000 people die from the disease annually in the United States. Significant effort has been put into developing a thorough understanding of the molecular and genetic events that contribute to tumor progression due to mounting evidence that breast cancers are driven by predictable and identifiable genetic mutations, Sphingolipids modulate many of the growth, apoptosis, inflammatory, and angiogenic pathways that breast carcinomas rely on. Recent work in the field of sphingolipidomics has identified many key roles for the sphingolipids in breast tumor progression and identified signaling roles in each of the molecular subtypes of breast cancer. For example, in luminal type tumors, increased expression of ceramide producing enzymes and high levels of complex sphingolipids are associated with poor outcomes and multi-drug resistance. In basal type breast tumors CERT and GCS play a role in resistance to taxanes suggesting that targeting these pathways may be an effective route for the treatment of aggressive triple negative tumors. The role of sphingolipids in Her2-like tumors has not been thoroughly studied. However, CERK has been identified as potential driver of Her2-like tumors. Clearly, sphingolipid signaling in tumor modulation is both complex and vital. By integrating sphingolipid signaling into the molecular characterization of breast tumors, new opportunities for targeted intervention are identified. It is increasingly apparent that modulating sphingolipid levels in tumors will be an effective and powerful method for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Cancer Society (2013) Cancer facts & figures 2013. American Cancer Society, Atlanta

    Google Scholar 

  2. Hajdu SI (2011) A note from history: landmarks in history of cancer, part 1. Cancer 117(5):1097–1102

    Article  PubMed  Google Scholar 

  3. Vargas A et al (2012) [The Edwin Smith papyrus in the history of medicine]. Rev Med Chil 140(10):1357–1362

    Article  PubMed  Google Scholar 

  4. Aszmann OC (2000) The life and work of Theodore Schwann. J Reconstr Microsurg 16(4):291–295

    Article  CAS  PubMed  Google Scholar 

  5. Triolo VA (1965) Nineteenth century foundations of cancer research advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res 25:75–106

    CAS  PubMed  Google Scholar 

  6. Hajdu SI, Darvishian F (2013) A note from history: landmarks in history of cancer, part 5. Cancer 119(8):1450–1466

    Article  PubMed  Google Scholar 

  7. Hajdu SI (2012) A note from history: landmarks in history of cancer, part 4. Cancer 118(20):4914–4928

    Article  PubMed  Google Scholar 

  8. Sistrunk WE, Maccarty WC (1922) Life expectancy following radical amputation for carcinoma of the breast: a clinical and pathologic study of 218 cases. Ann Surg 75(1):61–69

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hajdu SI, Vadmal M (2013) A note from history: Landmarks in history of cancer, Part 6. Cancer 119(23):4058–4082

    Article  PubMed  Google Scholar 

  10. Beatson G (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet 148(3803):162–165

    Article  Google Scholar 

  11. Love RR, Philips J (2002) Oophorectomy for breast cancer: history revisited. J Natl Cancer Inst 94(19):1433–1434

    Article  PubMed  Google Scholar 

  12. Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13(4):397–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  14. Umeda M, Heidelberger C (1968) Comparative studies of fluorinated pyrimidines with various cell lines. Cancer Res 28(12):2529–2538

    CAS  PubMed  Google Scholar 

  15. Oshaughnessy JA et al (2001) Randomized, open-label, phase II trial of oral capecitabine (Xeloda) vs. a reference arm of intravenous CMF (cyclophosphamide, methotrexate and 5-fluorouracil) as first-line therapy for advanced/metastatic breast cancer. Ann Oncol 12(9):1247–1254

    Article  CAS  PubMed  Google Scholar 

  16. Kunimoto T, Hori M, Umezawa H (1967) Modes of action of phleomycin, bleomycin and formycin on HeLa S3 cells in synchronized culture. J Antibiot (Tokyo) 20(5):277–281

    CAS  Google Scholar 

  17. Di Marco A, Gaetani M, Scarpinato B (1969) Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother Rep 53(1):33–37

    PubMed  Google Scholar 

  18. Creasey WA et al (1976) Clinical effects and pharmacokinetics of different dosage schedules of adriamycin. Cancer Res 36(1):216–221

    CAS  PubMed  Google Scholar 

  19. Moore FD et al (1967) Carcinoma of the breast. A decade of new results with old concepts. N Engl J Med 277(7):343–350

    Article  CAS  PubMed  Google Scholar 

  20. Jensen EV (1975) Estrogen receptors in hormone-dependent breast cancers. Cancer Res 35(11 Pt. 2):3362–3364

    CAS  PubMed  Google Scholar 

  21. Block GE et al (1978) Correlation of estrophilin content of primary mammary cancer to eventual endocrine treatment. Ann Surg 188(3):372–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ward HW (1973) Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Br Med J 1(5844):13–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Slichenmyer WJ, Von Hoff DD (1991) Taxol: a new and effective anti-cancer drug. Anticancer Drugs 2(6):519–530

    Article  CAS  PubMed  Google Scholar 

  24. Hanauske AR et al (1992) Effects of Taxotere and taxol on in vitro colony formation of freshly explanted human tumor cells. Anticancer Drugs 3(2):121–124

    Article  CAS  PubMed  Google Scholar 

  25. Seidman AD et al (2008) Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26(10):1642–1649

    Article  CAS  PubMed  Google Scholar 

  26. Sparano JA et al (2008) Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358(16):1663–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Druker BJ et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    Article  CAS  PubMed  Google Scholar 

  28. Pegram M et al (1999) Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18(13):2241–2251

    Article  CAS  PubMed  Google Scholar 

  29. Pegram MD, Konecny G, Slamon DJ (2000) The molecular and cellular biology of HER2/neu gene amplification/overexpression and the clinical development of herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res 103:57–75

    Article  CAS  PubMed  Google Scholar 

  30. Baselga J et al (2001) Mechanism of action of trastuzumab and scientific update. Semin Oncol 28(5 Suppl 16):4–11

    Article  CAS  PubMed  Google Scholar 

  31. Hardy NM, Fowler DH, Bishop MR (2006) Immunotherapy of metastatic breast cancer: phase I trail of reduced-intensity allogeneic hematopoietic stem cell transplantation with Th2/Tc2 T-cell exchange. Clin Breast Cancer 7(1):87–89

    Article  PubMed  Google Scholar 

  32. Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A (2010) AJCC cancer staging manual, 7th edn. Springer, New York, p 649

    Google Scholar 

  33. Schott A (2014) Systemic treatment of metastatic breast cancer in women: Chemotherapy

    Google Scholar 

  34. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  35. Howlader N et al (2014) US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst 106(5):pii: dju055

    Article  Google Scholar 

  36. Sørlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    Article  PubMed Central  PubMed  Google Scholar 

  37. Parker JS et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167

    Article  PubMed Central  PubMed  Google Scholar 

  38. Voduc KD et al (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28(10):1684–1691

    Article  PubMed  Google Scholar 

  39. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  40. Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277(29):25847–25850

    Article  CAS  PubMed  Google Scholar 

  41. Snyder RA, Brady RO, Kornblith PL (1970) Ganglioside patterns of cultured human glioma cells. Neurology 20(4):412

    CAS  Google Scholar 

  42. Keenan TW et al (1975) Exogenous glycosphingolipids suppress growth rate of transformed and untransformed 3 T3 mouse cells. Exp Cell Res 92(2):259–270

    Article  CAS  PubMed  Google Scholar 

  43. Manuelidis L, Yu RK, Manuelidis EE (1977) Ganglioside content and pattern in human gliomas in culture. Correlation of morphological changes with altered gangliosides. Acta Neuropathol 38(2):129–135

    Article  CAS  PubMed  Google Scholar 

  44. Bremer EG, Schlessinger J, Hakomori S (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261(5):2434–2440

    CAS  PubMed  Google Scholar 

  45. Okada Y, Matsuura H, Hakomori S (1985) Inhibition of tumor cell growth by aggregation of a tumor-associated glycolipid antigen: a close functional association between gangliotriaosylceramide and transferrin receptor in mouse lymphoma L-5178Y. Cancer Res 45(6):2793–2801

    CAS  PubMed  Google Scholar 

  46. Kim YS et al (1986) Expression of LeY and extended LeY blood group-related antigens in human malignant, premalignant, and nonmalignant colonic tissues. Cancer Res 46(11):5985–5992

    CAS  PubMed  Google Scholar 

  47. Hannun YA, Bell RM (1989) Regulation of protein kinase C by sphingosine and lysosphingolipids. Clin Chim Acta 185(3):333–345

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z et al (2014) Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo. BMC Cancer 14:90

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Kim J et al (2011) Sustained inhibition of PKCalpha reduces intravasation and lung seeding during mammary tumor metastasis in an in vivo mouse model. Oncogene 30(3):323–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Chalfant CE et al (1999) Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem 274(29):20313–20317

    Article  CAS  PubMed  Google Scholar 

  51. Hanada K et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(6968):803–809

    Article  CAS  PubMed  Google Scholar 

  52. Charruyer A et al (2008) Decreased ceramide transport protein (CERT) function alters sphingomyelin production following UVB irradiation. J Biol Chem 283(24):16682–16692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Blom T et al (2012) Tracking sphingosine metabolism and transport in sphingolipidoses: NPC1 deficiency as a test case. Traffic 13(9):1234–1243

    Article  CAS  PubMed  Google Scholar 

  54. Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6(7):489–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Bertucci F et al (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 65(6):2170–2178

    Article  CAS  PubMed  Google Scholar 

  56. Prat A et al (2013) Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat 142(2):237–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Schnitt SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol 23(S2):S60–S64

    Article  PubMed  Google Scholar 

  58. Bange J, Zwick E, Ullrich A (2001) Molecular targets for breast cancer therapy and prevention. Nat Med 7(5):548–552

    Article  CAS  PubMed  Google Scholar 

  59. Stemke-Hale K et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549

    Article  CAS  PubMed  Google Scholar 

  61. Tran B, Bedard PL (2011) Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res 13(6):221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wirapati P et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):R65

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  CAS  PubMed  Google Scholar 

  64. Troester MA et al (2006) Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 6:276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Jiang Z et al (2010) Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Invest 120(9):3296–3309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ruckhaberle E et al (2009) Prognostic relevance of glucosylceramide synthase (GCS) expression in breast cancer. J Cancer Res Clin Oncol 135(1):81–90

    Article  PubMed  CAS  Google Scholar 

  68. Zhang X et al (2012) Doxorubicin influences the expression of glucosylceramide synthase in invasive ductal breast cancer. PLoS One 7(11), e48492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Lucki NC, Sewer MB (2011) Genistein stimulates MCF-7 breast cancer cell growth by inducing acid ceramidase (ASAH1) gene expression. J Biol Chem 286(22):19399–19409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Bai A et al (2009) Synthesis and bioevaluation of omega-N-amino analogs of B13. Bioorg Med Chem 17(5):1840–1848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Ruckhaberle E et al (2009) Acid ceramidase 1 expression correlates with a better prognosis in ER-positive breast cancer. Climacteric 12(6):502–513

    Article  CAS  PubMed  Google Scholar 

  72. Ruckhaberle E et al (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112(1):41–52

    Article  PubMed  CAS  Google Scholar 

  73. Liu YY et al (2011) Glucosylceramide synthase, a factor in modulating drug resistance, is overexpressed in metastatic breast carcinoma. Int J Oncol 39(2):425–431

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sun YL et al (2005) [Construction of glucosylceramide synthase-specific siRNA expression vector and its efficiency in reversal of drug resistance in breast carcinoma cells]. Zhonghua Yi Xue Za Zhi 85(8):518–521

    CAS  PubMed  Google Scholar 

  75. Gouaze V et al (2005) Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 65(9):3861–3867

    Article  CAS  PubMed  Google Scholar 

  76. Lavie Y et al (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272(3):1682–1687

    Article  CAS  PubMed  Google Scholar 

  77. Bose R et al (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82(3):405–414

    Article  CAS  PubMed  Google Scholar 

  78. Lucci A et al (1999) Multidrug resistance modulators and doxorubicin synergize to elevate ceramide levels and elicit apoptosis in drug-resistant cancer cells. Cancer 86(2):300–311

    Article  CAS  PubMed  Google Scholar 

  79. Charles AG et al (2001) Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol 47(5):444–450

    Article  CAS  PubMed  Google Scholar 

  80. Gewirtz DA (2000) Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat 62(3):223–235

    Article  CAS  PubMed  Google Scholar 

  81. Schiffmann S et al (2009) Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 30(5):745–752

    Article  CAS  PubMed  Google Scholar 

  82. Erez-Roman R, Pienik R, Futerman AH (2010) Increased ceramide synthase 2 and 6 mRNA levels in breast cancer tissues and correlation with sphingosine kinase expression. Biochem Biophys Res Commun 391(1):219–223

    Article  CAS  PubMed  Google Scholar 

  83. Hartmann D et al (2012) Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 44(4):620–628

    Article  CAS  PubMed  Google Scholar 

  84. Walker T et al (2009) Sorafenib and vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms. Mol Pharmacol 76(2):342–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Min J et al (2007) (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res 5(8):801–812

    Article  CAS  PubMed  Google Scholar 

  86. Hoeferlin LA et al (2013) Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 288(18):12880–12890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Bareford MD et al (2012) Sorafenib and pemetrexed toxicity in cancer cells is mediated via SRC-ERK signaling. Cancer Biol Ther 13(9):793–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Wooten-Blanks LG et al (2007) Mechanisms of ceramide-mediated repression of the human telomerase reverse transcriptase promoter via deacetylation of Sp3 by histone deacetylase 1. FASEB J 21(12):3386–3397

    Article  CAS  PubMed  Google Scholar 

  89. Koybasi S et al (2004) Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J Biol Chem 279(43):44311–44319

    Article  CAS  PubMed  Google Scholar 

  90. Demircan B et al (2009) Comparative epigenomics of human and mouse mammary tumors. Genes Chromosomes Cancer 48(1):83–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Chalmers IJ et al (2001) Mapping the chromosome 16 cadherin gene cluster to a minimal deleted region in ductal breast cancer. Cancer Genet Cytogenet 126(1):39–44

    Article  CAS  PubMed  Google Scholar 

  92. Vijayaraghavalu S et al (2012) Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions. Mol Pharm 9(9):2730–2742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Ito H et al (2009) Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. Biochim Biophys Acta 1789(11-12):681–690

    Article  CAS  PubMed  Google Scholar 

  94. Ellegaard AM et al (2013) Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance. Mol Cancer Ther 12(10):2018–2030

    Article  CAS  PubMed  Google Scholar 

  95. Zeidan YH, Jenkins RW, Hannun YA (2008) Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J Cell Biol 181(2):335–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Canals D et al (2010) Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane. J Biol Chem 285(42):32476–32485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Perry DM et al (2014) Defining a role for acid sphingomyelinase in the p38/interleukin-6 pathway. J Biol Chem 10(6):515–527

    Google Scholar 

  98. Ullio C et al (2012) Sphingosine mediates TNFalpha-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells. J Lipid Res 53(6):1134–1143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Bhabak KP et al (2013) Effective inhibition of acid and neutral ceramidases by novel B-13 and LCL-464 analogues. Bioorg Med Chem 21(4):874–882

    Article  CAS  PubMed  Google Scholar 

  100. Jenkins RW et al (2011) Regulation of CC ligand 5/RANTES by acid sphingomyelinase and acid ceramidase. J Biol Chem 286(15):13292–13303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Cain BS et al (1999) Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Crit Care Med 27(7):1309–1318

    Article  CAS  PubMed  Google Scholar 

  102. Mathias S et al (1993) Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 259(5094):519–522

    Article  CAS  PubMed  Google Scholar 

  103. Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269(5):3125–3128

    CAS  PubMed  Google Scholar 

  104. Zeidan YH et al (2006) Acid ceramidase but not acid sphingomyelinase is required for tumor necrosis factor-{alpha}-induced PGE2 production. J Biol Chem 281(34):24695–24703

    Article  CAS  PubMed  Google Scholar 

  105. Chen D et al (2007) Prostaglandin E(2) induces breast cancer related aromatase promoters via activation of p38 and c-Jun NH(2)-terminal kinase in adipose fibroblasts. Cancer Res 67(18):8914–8922

    Article  CAS  PubMed  Google Scholar 

  106. Soria G, Ben-Baruch A (2008) The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267(2):271–285

    Article  CAS  PubMed  Google Scholar 

  107. Pinilla S et al (2009) Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 284(1):80–85

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y et al (2009) Role of CCL5 in invasion, proliferation and proportion of CD44+/CD24- phenotype of MCF-7 cells and correlation of CCL5 and CCR5 expression with breast cancer progression. Oncol Rep 21(4):1113–1121

    Article  CAS  PubMed  Google Scholar 

  109. Karczewska A et al (2000) Expression of interleukin-6, interleukin-6 receptor, and glycoprotein 130 correlates with good prognoses for patients with breast carcinoma. Cancer 88(9):2061–2071

    Article  CAS  PubMed  Google Scholar 

  110. Salgado R et al (2003) Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103(5):642–646

    Article  CAS  PubMed  Google Scholar 

  111. Dethlefsen C, Hojfeldt G, Hojman P (2013) The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 138(3):657–664

    Article  CAS  PubMed  Google Scholar 

  112. Asgeirsson KS et al (1998) The effects of IL-6 on cell adhesion and e-cadherin expression in breast cancer. Cytokine 10(9):720–728

    Article  CAS  PubMed  Google Scholar 

  113. Watson C et al (2010) High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am J Pathol 177(5):2205–2215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhang Y et al (2014) Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS One 9(2), e90362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Pinho FG et al (2013) Downregulation of microRNA-515-5p by the estrogen receptor modulates sphingosine kinase 1 and breast cancer cell proliferation. Cancer Res 73(19):5936–5948

    Article  CAS  PubMed  Google Scholar 

  116. Takabe K et al (2010) Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. J Biol Chem 285(14):10477–10486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Kim ES et al (2014) Inflammatory lipid sphingosine-1-phosphate upregulates C-reactive protein via C/EBPbeta and potentiates breast cancer progression. Oncogene 33(27):3583–3593

    Article  CAS  PubMed  Google Scholar 

  118. Rutherford C et al (2013) Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis 4, e927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Hu X et al (2009) Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7(4):511–522

    Article  CAS  PubMed  Google Scholar 

  120. Gustin DJ et al (2013) Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 23(16):4608–4616

    Article  CAS  PubMed  Google Scholar 

  121. Rex K et al (2013) Sphingosine kinase activity is not required for tumor cell viability. PLoS One 8(7), e68328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Ruckhaberle E et al (2009) Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol 135(8):1005–1013

    Article  PubMed  CAS  Google Scholar 

  123. Pastukhov O et al (2014) The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death. Br J Pharmacol 171(24):5829–5844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chandriani S et al (2009) A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One 4(8), e6693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Liedtke C et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281

    Article  PubMed  Google Scholar 

  126. Stover T, Kester M (2003) Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J Pharmacol Exp Ther 307(2):468–475

    Article  CAS  PubMed  Google Scholar 

  127. Shabbits JA, Mayer LD (2003) Intracellular delivery of ceramide lipids via liposomes enhances apoptosis in vitro. Biochim Biophys Acta 1612(1):98–106

    Article  CAS  PubMed  Google Scholar 

  128. Stover TC et al (2005) Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res 11(9):3465–3474

    Article  CAS  PubMed  Google Scholar 

  129. Miyaji M et al (2005) Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 202(2):249–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Watters RJ et al (2012) Development and use of ceramide nanoliposomes in cancer. Methods Enzymol 508:89–108

    Article  CAS  PubMed  Google Scholar 

  131. Tran MA et al (2008) Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 14(11):3571–3581

    Article  CAS  PubMed  Google Scholar 

  132. Wilhelm SM et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140

    Article  CAS  PubMed  Google Scholar 

  133. Tan QX et al (2014) Sorafenib-based therapy in HER2-negative advanced breast cancer: Results from a retrospective pooled analysis of randomized controlled trials. Exp Ther Med 7(5):1420–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Pedersen AM et al (2014) Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor alpha. Int J Oncol 45(5):2167–2175

    CAS  PubMed  Google Scholar 

  135. Pedrosa LR et al (2013) Improving intracellular doxorubicin delivery through nanoliposomes equipped with selective tumor cell membrane permeabilizing short-chain sphingolipids. Pharm Res 30(7):1883–1895

    Article  CAS  PubMed  Google Scholar 

  136. Zolnik BS et al (2008) Rapid distribution of liposomal short-chain ceramide in vitro and in vivo. Drug Metab Dispos 36(8):1709–1715

    Article  CAS  PubMed  Google Scholar 

  137. Sirohi B et al (2008) Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol 19(11):1847–1852

    Article  CAS  PubMed  Google Scholar 

  138. Swanton C et al (2007) Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11(6):498–512

    Article  CAS  PubMed  Google Scholar 

  139. Juul N et al (2010) Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. Lancet Oncol 11(4):358–365

    Article  CAS  PubMed  Google Scholar 

  140. Hla T et al (2000) Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Ann N Y Acad Sci 905:16–24

    Article  CAS  PubMed  Google Scholar 

  141. Mousseau Y et al (2012) Fingolimod inhibits PDGF-B-induced migration of vascular smooth muscle cell by down-regulating the S1PR1/S1PR3 pathway. Biochimie 94(12):2523–2531

    Article  CAS  PubMed  Google Scholar 

  142. Long JS et al (2010) Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells. J Biol Chem 285(46):35957–35966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Nagaoka Y et al (2008) Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast and colon cancer cells. Biol Pharm Bull 31(6):1177–1181

    Article  CAS  PubMed  Google Scholar 

  144. Azuma H et al (2002) Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res 62(5):1410–1419

    CAS  PubMed  Google Scholar 

  145. Slamon D et al (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365(14):1273–1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Joensuu H et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354(8):809–820

    Article  CAS  PubMed  Google Scholar 

  147. Goss PE et al (2013) Adjuvant lapatinib for women with early-stage HER2-positive breast cancer: a randomised, controlled, phase 3 trial. Lancet Oncol 14(1):88–96

    Article  CAS  PubMed  Google Scholar 

  148. Goldhirsch A et al (2013) 2 years versus 1 year of adjuvant trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet 382(9897):1021–1028

    Article  CAS  PubMed  Google Scholar 

  149. Agrawal A et al (2005) Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S135–S144

    Article  CAS  PubMed  Google Scholar 

  150. Lee AJ et al (2012) CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploid-specific cancer cell death through autophagy induction. J Pathol 226(3):482–494

    Article  CAS  PubMed  Google Scholar 

  151. Payne AW et al (2014) Ceramide kinase promotes tumor cell survival and mammary tumor recurrence. Cancer Res 74(21):6352–6363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Kim IC et al (2013) Lipid profiles for HER2-positive breast cancer. Anticancer Res 33(6):2467–2472

    CAS  PubMed  Google Scholar 

  153. Sano O et al (2007) Sphingomyelin-dependence of cholesterol efflux mediated by ABCG1. J Lipid Res 48(11):2377–2384

    Article  CAS  PubMed  Google Scholar 

  154. Montefusco DJ et al (2013) Distinct signaling roles of ceramide species in yeast revealed through systematic perturbation and systems biology analyses. Sci Signal 6(299):p. rs14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the SUNY Stony Brook Bioinformatics Facility. The results presented in Fig. 1 are based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/. This work is partly supported by NCI grant P01 CA097132. We thank Dr. Christopher J. Clarke for careful review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf A. Hannun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Newcomb, B., Hannun, Y.A. (2015). Sphingolipids as Mediators of Breast Cancer Progression, Metastasis, Response and Resistance to Chemotherapy. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_4

Download citation

Publish with us

Policies and ethics