Skip to main content

Microscale Technologies for Engineering Complex Tissue Structures

  • Chapter

Abstract

Engineered tissue scaffolds aim to reproduce the body’s architectural and geometrical intricacies, including vital cell–cell interactions. These scaffolds serve as synthetic extracellular matrices that organize the embedded cells into a three-dimensional (3D) architecture and present them with stimuli for their growth and maturation. Tissue engineering techniques have been applied to many types of tissues; however, numerous challenges regarding their development still remain. These challenges include our inability to generate a functional vasculature that can supply the tissue with nutrients and oxygen and the inability to mimic the complex cell–microenvironmental interactions that regulate the formation of a functional tissue. This chapter focuses on the most recent developments in the field of microfabrication technologies to design vascularized tissue constructs. In particular, we discuss emerging bottom-up approaches to design complex macroscale structures, examine their current limitations, and conclude with future directions in designing more complex tissue architecture.

Keywords

  • Microscale technologies
  • Tissue engineering
  • Vascularized tissues
  • Bioprinting
  • Complex tissues

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20726-1_1
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-20726-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CrossRef  Google Scholar 

  2. Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71

    CrossRef  Google Scholar 

  3. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    CrossRef  Google Scholar 

  4. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453

    CrossRef  Google Scholar 

  5. Singh A, Peppas NA (2014) Hydrogels and scaffolds for immunomodulation. Adv Mater 26:6530–6541

    CrossRef  Google Scholar 

  6. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470

    CrossRef  Google Scholar 

  7. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480

    CrossRef  Google Scholar 

  8. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    CrossRef  Google Scholar 

  9. Kaully T, Kaufman-Francis K, Lesman A, Levenberg S (2009) Vascularization – the conduit to viable engineered tissues. Tissue Eng Part B Rev 15:159–169

    CrossRef  Google Scholar 

  10. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15:353–370

    CrossRef  Google Scholar 

  11. Phelps EA, Garcia A (2010) Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol 21:704–709

    CrossRef  Google Scholar 

  12. Naito Y, Shinoka T, Duncan D, Hibino N, Solomon D, Cleary M et al (2011) Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev 63:312–323

    CrossRef  Google Scholar 

  13. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27

    CrossRef  Google Scholar 

  14. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    CrossRef  Google Scholar 

  15. Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW et al (2012) Microfabricated biomaterials for engineering 3D tissues. Adv Mater 24:1782–1804

    CrossRef  Google Scholar 

  16. Patel RG, Purwada A, Cerchietti L, Inghirami G, Melnick A, Gaharwar AK et al (2014) Microscale bioadhesive hydrogel arrays for cell engineering applications. Cell Mol Bioeng 7(3):394–408

    CrossRef  Google Scholar 

  17. Lanza RP, Vacanti J (2007) Principles of tissue engineering. Academic Press, New York

    Google Scholar 

  18. Giuliani M, Moritz W, Bodmer E, Dindo D, Kugelmeier P, Lehmann R et al (2005) Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant 14:67–76

    CrossRef  Google Scholar 

  19. Larrea X, Buechler P, Büchler P, Buchler P (2009) A transient diffusion model of the cornea for the assessment of oxygen diffusivity and consumption. Invest Ophthalmol Vis Sci 50:1076–1080

    CrossRef  Google Scholar 

  20. Cook CA, Hahn KC, Morrissette-McAlmon JBF, Grayson WL (2015) Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 52:376–384

    CrossRef  Google Scholar 

  21. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    CrossRef  Google Scholar 

  22. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CrossRef  Google Scholar 

  23. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931

    Google Scholar 

  24. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    CrossRef  Google Scholar 

  25. Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43

    CrossRef  Google Scholar 

  26. Flamme I, Frölich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210

    CrossRef  Google Scholar 

  27. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15

    CrossRef  Google Scholar 

  28. Singer AJ, Clark R (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    CrossRef  Google Scholar 

  29. Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF et al (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176:1375

    CrossRef  Google Scholar 

  30. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES et al (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659

    CrossRef  Google Scholar 

  31. Sato Y, Endo H, Okuyama H, Takeda T, Iwahashi H, Imagawa A et al (2011) Cellular hypoxia of pancreatic β-cells due to high levels of oxygen consumption for insulin secretion in vitro. J Biol Chem 286:12524–12532

    CrossRef  Google Scholar 

  32. Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319

    CrossRef  Google Scholar 

  33. Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009

    CrossRef  Google Scholar 

  34. West JL, Moon JJ (2008) Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem 8:300–310

    CrossRef  Google Scholar 

  35. Khan OF, Sefton MV (2011) Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol 29(8):379–387

    Google Scholar 

  36. Rouwkema J, Rivron N, van Blitterswijk C (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441

    CrossRef  Google Scholar 

  37. Sukmana I, Vermette P (2010) Polymer fibers as contact guidance to orient microvascularization in a 3D environment. J Biomed Mater Res A 92A:1587–1597

    Google Scholar 

  38. Gaharwar AK, Nikkhah M, Sant S, Khademhosseini A (2015) Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication 7:015001

    CrossRef  Google Scholar 

  39. Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A (2013) Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomater 9:5963–5973

    CrossRef  Google Scholar 

  40. Patel ZS, Mikos AG (2004) Angiogenesis with biomaterial-based drug-and cell-delivery systems. J Biomater Sci Polym Ed 15:701–726

    CrossRef  Google Scholar 

  41. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    CrossRef  Google Scholar 

  42. Silva EA, Mooney DJ (2010) Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 31:1235–1241

    CrossRef  Google Scholar 

  43. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M et al (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233

    CrossRef  Google Scholar 

  44. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Yung S et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    CrossRef  Google Scholar 

  45. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    CrossRef  Google Scholar 

  46. Salcedo R, Wasserman K, Young HA, Grimm MC, Howard O, Anver MR et al (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1 {alpha}. Am J Pathol 154:1125

    CrossRef  Google Scholar 

  47. Tabata Y, Ikada Y (1999) Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20:2169–2175

    CrossRef  Google Scholar 

  48. Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178

    CrossRef  Google Scholar 

  49. Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26

    Google Scholar 

  50. Roberts AB (2000) Molecular and cell biology of TGF. Miner Electrolyte Metab 24:111–119

    CrossRef  Google Scholar 

  51. Bergsten E, Uutela M, Li X, Pietras K, Östman A, Heldin CH et al (2001) PDGF-D is a specific, protease-activated ligand for the PDGF -receptor. Nat Cell Biol 3:512–516

    CrossRef  Google Scholar 

  52. LaRochelle WJ, Jeffers M, McDonald WF, Chillakuru RA, Giese NA, Lokker NA et al (2001) PDGF-D, a new protease-activated growth factor. Nat Cell Biol 3:517–521

    CrossRef  Google Scholar 

  53. Stiles CD (1983) The molecular biology of platelet-derived growth factor. Cell 33:653

    CrossRef  Google Scholar 

  54. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8:529–532

    CrossRef  Google Scholar 

  55. Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L, Oettgen P et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202

    CrossRef  Google Scholar 

  56. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotech 23:879–884

    CrossRef  Google Scholar 

  57. Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci 107:3323–3328

    CrossRef  Google Scholar 

  58. Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540

    CrossRef  Google Scholar 

  59. Wang GJ, Hsueh CC, Hsu S, Hung HS (2007) Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography. J Micromech Microeng 17:2000

    CrossRef  Google Scholar 

  60. Sodha S, Wall K, Redenti S, Klassen H, Young MJ, Tao SL (2011) Microfabrication of a three-dimensional polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation. J Biomater Sci Polym Ed 22(4–6):443–456

    CrossRef  Google Scholar 

  61. Armani DK, Liu C (2000) Microfabrication technology for polycaprolactone, a biodegradable polymer. J Micromech Microeng 10:80

    CrossRef  Google Scholar 

  62. Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT (2006) Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27:2558–2565

    CrossRef  Google Scholar 

  63. Guillemette MD, Park H, Hsiao JC, Jain SR, Larson BL, Langer R et al (2010) Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds. Macromol Biosci 10(11):1330–1337

    CrossRef  Google Scholar 

  64. Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang Y, Borenstein JT et al (2006) Three dimensional microfluidic tissue engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169

    CrossRef  Google Scholar 

  65. Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ et al (2008) A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29:418–426

    CrossRef  Google Scholar 

  66. Zhang H, Patel A, Gaharwar AK, Mihaila SM, Iviglia GI, Mukundan S et al (2013) Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules 14(5):1299–1310

    Google Scholar 

  67. Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K et al (2012) Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 33:9009

    CrossRef  Google Scholar 

  68. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544

    CrossRef  Google Scholar 

  69. Oh J, Kim K, Won S, Cha C, Gaharwar A, Selimovic S et al (2013) Microfluidic fabrication of cell adhesive chitosan microtubes. Biomed Microdevices 15(3):465–472

    Google Scholar 

  70. Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Photocrosslinkable kappa-carrageenan hydrogels for tissue engineering applications. Adv Healthc Mater 2(6):895–907

    Google Scholar 

  71. Chiu Y-C, Larson JC, Perez-Luna VH, Brey EM (2009) Formation of microchannels in poly(ethylene glycol) hydrogels by selective degradation of patterned microstructures. Chem Mater 21:1677–1682

    CrossRef  Google Scholar 

  72. Heckele M, Schomburg W (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1

    CrossRef  Google Scholar 

  73. Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118:5722–5731

    CrossRef  Google Scholar 

  74. Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang Y (2005) Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 11:302–309

    CrossRef  Google Scholar 

  75. Zheng Y, Henderson PW, Choi NW, Bonassar LJ, Spector JA, Stroock AD (2011) Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32:5391–5401

    CrossRef  Google Scholar 

  76. Diez M, Schulte VA, Stefanoni F, Natale CF, Mollica F, Cesa CM et al (2011) Molding micropatterns of elasticity on PEG based hydrogels to control cell adhesion and migration. Adv Eng Mater 13(10):B395–B404

    Google Scholar 

  77. Bianchi F, Rosi M, Vozzi G, Emanueli C, Madeddu P, Ahluwalia A (2007) Microfabrication of fractal polymeric structures for capillary morphogenesis: applications in therapeutic angiogenesis and in the engineering of vascularized tissue. J Biomed Mater Res B Appl Biomater 81B:462–468

    CrossRef  Google Scholar 

  78. Vozzi G, Previti A, De Rossi D, Ahluwalia A (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8:1089–1098

    CrossRef  Google Scholar 

  79. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204

    CrossRef  Google Scholar 

  80. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7:32–39

    CrossRef  Google Scholar 

  81. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271

    CrossRef  Google Scholar 

  82. Therriault D, Shepherd RF, White SR, Lewis JA (2005) Fugitive inks for direct write assembly of three dimensional microvascular networks. Adv Mater 17:395–399

    CrossRef  Google Scholar 

  83. Wu W, DeConinck A, Lewis JA (2010) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183

    Google Scholar 

  84. Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E et al (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9:3109–3118

    CrossRef  Google Scholar 

  85. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    CrossRef  Google Scholar 

  86. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915

    CrossRef  Google Scholar 

  87. Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175

    CrossRef  Google Scholar 

  88. King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable microfluidics. Adv Mater 16:2007–2012

    CrossRef  Google Scholar 

  89. Borenstein JT, Megley K, Wall K, Pritchard EM, Truong D, Kaplan DL et al (2010) Tissue equivalents based on cell-seeded biodegradable microfluidic constructs. Materials 3:1833–1844

    CrossRef  Google Scholar 

  90. Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotech 20:602–606

    CrossRef  Google Scholar 

  91. Wang J, Bettinger CJ, Langer RS, Borenstein JT (2010) Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly (ester amide) elastomers. Organogenesis 6:212

    CrossRef  Google Scholar 

  92. Borenstein J, Tupper M, Mack P, Weinberg E, Khalil A, Hsiao J et al (2010) Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12:71–79

    CrossRef  Google Scholar 

  93. Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725

    CrossRef  Google Scholar 

  94. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774

    CrossRef  Google Scholar 

  95. Bellan LM, Pearsall M, Cropek DM, Langer R (2012) A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Adv Mater 24:5187–5191

    CrossRef  Google Scholar 

  96. Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M et al (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3

    Google Scholar 

  97. Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM et al (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951

    CrossRef  Google Scholar 

  98. Fernandez JG, Khademhosseini A (2010) Micro-masonry: construction of 3D structures by microscale self-assembly. Adv Mater 22:2538–2541

    CrossRef  Google Scholar 

  99. Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci 105:9522–9527

    CrossRef  Google Scholar 

  100. Du Y, Ghodousi M, Qi H, Haas N, Xiao W, Khademhosseini A. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol Bioeng 108(7):1693–1703

    Google Scholar 

  101. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL et al (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 14:413–421

    CrossRef  Google Scholar 

  102. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001

    CrossRef  Google Scholar 

  103. McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci 103:11461

    CrossRef  Google Scholar 

  104. Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VT, Nikkhah M et al (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062

    CrossRef  Google Scholar 

  105. Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A et al (2014) Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842

    CrossRef  Google Scholar 

  106. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    CrossRef  Google Scholar 

  107. Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G (2011) Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 7:568–577

    CrossRef  Google Scholar 

  108. Gaharwar AK, Schexnailder P, Kaul V, Akkus O, Zakharov D, Seifert S et al (2010) Highly extensible bio-nanocomposite films with direction-dependent properties. Adv Funct Mater 20:429–436

    CrossRef  Google Scholar 

  109. Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu C-J, Akkus O et al (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12:779–793

    CrossRef  Google Scholar 

  110. Gaharwar AK, Rivera CP, Wu C-J, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148

    CrossRef  Google Scholar 

  111. Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216:248–264

    CrossRef  Google Scholar 

  112. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3(2):021001

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh K. Gaharwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peak, C.W., Cross, L., Singh, A., Gaharwar, A.K. (2016). Microscale Technologies for Engineering Complex Tissue Structures. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)