Skip to main content

Microscale Cell Encapsulation Materials and Fabrication Techniques for Type 1 Diabetes

  • Chapter
Microscale Technologies for Cell Engineering
  • 1405 Accesses

Abstract

Type 1 diabetes (T1D) is an autoimmune disease where pancreatic beta cells, the only insulin-producing cells, are attacked and destroyed by a patient’s own immune system. Currently, insulin injection or infusion remains the only standard treatment for T1D. However, insulin does not cure this disease nor does it permit minute-to-minute regulation as pancreatic beta cells do. This can lead to various hyper/hypoglycemia-associated complications. Islet transplantation provides a potential alternative therapy and has been successfully used to treat patients. However, the severe shortage of donor organs and the life-long immunosuppression that are required by such a transplant have prevented this approach from being widely used. Recently, transplantation of encapsulated or immunoprotected islets or stem cell-derived beta-like cells has become an increasingly promising approach. In order to accomplish the encapsulation and immunoprotection, a variety of materials and microscale techniques have been developed. This chapter provides a brief overview of the different methods developed to fabricate microscale encapsulation materials and devices. We conclude that although challenging, fabrication and material innovation may one day make the cell encapsulation a clinical reality for T1D patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

T1D:

Type 1 diabetes

STZ:

Streptozotocin

PVA:

Polyvinyl alcohol

ECM:

Extracellular matrix

PEG:

Polyethylene glycol

PLGA:

Poly(lactic-co-glycolic acid)

NEEDs:

Nanofiber-enabled encapsulation devices

HA:

Hyaluronic acid

PDMS:

Polydimethylsiloxane

References

  1. Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457–467

    Article  Google Scholar 

  2. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    Article  Google Scholar 

  3. Gan MJ, Albanese-O’neill A, Haller MJ (2012) Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr Probl Pediatr Adolesc Health Care 42:269–291

    Article  Google Scholar 

  4. Daneman D (2006) Type 1 diabetes. Lancet 367:847–858

    Article  Google Scholar 

  5. Banting FG, Best CH (2007) The internal secretion of the pancreas. 1922. Indian J Med Res 125:251

    Google Scholar 

  6. Amer LD, Mahoney MJ, Bryant SJ (2014) Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue Eng Part B Rev 20(5):455–67

    Article  Google Scholar 

  7. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82

    Article  Google Scholar 

  8. Hirsch IB (2009) Realistic expectations and practical use of continuous glucose monitoring for the endocrinologist. J Clin Endocrinol Metab 94:2232–2238

    Article  Google Scholar 

  9. Donaghue KC, Chiarelli F, Trotta D, Allgrove J, Dahl‐Jorgensen K (2007) Microvascular and macrovascular complications. Pediatr Diabetes 8:163–170

    Article  Google Scholar 

  10. Association, A. D. (2008) Diagnosis and classification of diabetes mellitus. Diabetes Care 31:S55–S60

    Article  Google Scholar 

  11. Robertson RP (2004) Islet transplantation as a treatment for diabetes—a work in progress. N Engl J Med 350:694–705

    Article  Google Scholar 

  12. White SA, Shaw JA, Sutherland DE (2009) Pancreas transplantation. Lancet 373:1808–1817

    Article  Google Scholar 

  13. Stegall MD, Dean PG, Sung R, Guidinger MK, Mcbride MA, Sommers C, Basadonna G, Stock PG, Leichtman AB (2007) The rationale for the new deceased donor pancreas allocation schema. Transplantation 83:1156–1161

    Article  Google Scholar 

  14. Lacy PE, Kostianovsky M (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35–39

    Article  Google Scholar 

  15. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  Google Scholar 

  16. Orive G, Hernández RM, Rodríguez Gascón N, Calafiore R, Swi Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacík I, Pedraz JL (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22:87–92

    Article  Google Scholar 

  17. Zimmermann H, Zimmermann D, Reuss R, Feilen P, Manz B, Katsen A, Weber M, Ihmig F, Ehrhart F, Gessner P (2005) Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 16:491–501

    Article  Google Scholar 

  18. Hernández RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711–730

    Article  Google Scholar 

  19. Orive G, Hernández RM, Gascón AR, Calafiore R, Chang TM, De Vos P, Hortelano G, Hunkeler D, Lacík I, Shapiro AM, Pedraz JL (2003) Cell encapsulation: promise and progress. Nat Med 9:104–107

    Article  Google Scholar 

  20. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14:157–161

    Article  Google Scholar 

  21. Kang A, Park J, Ju J, Jeong GS, Lee S-H (2014) Cell encapsulation via microtechnologies. Biomaterials 35:2651–2663

    Article  Google Scholar 

  22. De Vos P, Marchetti P (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 8:363–366

    Article  Google Scholar 

  23. De Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67:15–34

    Article  Google Scholar 

  24. Kendall WF Jr, Opara EC (2002) Immunoisolation techniques for islet cell transplantation. Expert Opin Biol Ther 2:503–511

    Article  Google Scholar 

  25. Lanza RP, Butler DH, Borland KM, Staruk JE, Faustman DL, Solomon BA, Muller TE, Rupp RG, Maki T, Monaco AP (1991) Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc Natl Acad Sci 88:11100–11104

    Article  Google Scholar 

  26. Tatarkiewicz K, Hollister-Lock J, Quickel RR, Colton CK, Bonner-Weir S, Weir GC (1999) Reversal of hyperglycemia in mice after subcutaneous transplantation of macroencapsulated islets. Transplantation 67:665–671

    Article  Google Scholar 

  27. Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K (2004) PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25:5885–5892

    Article  Google Scholar 

  28. Qi Z, Shen Y, Yanai G, Yang K, Shirouzu Y, Hiura A, Sumi S (2010) The in vivo performance of polyvinyl alcohol macro-encapsulated islets. Biomaterials 31:4026–4031

    Article  Google Scholar 

  29. Aebischer P, Pochon N, Heyd B, Deglon N, Joseph J, Zurn A, Baetge E, Hammang J, Goddard M, Lysaght M (1996) Gene therapy for amyotrophic lateral sclerosis (Als) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum Gene Ther 7:851–860

    Article  Google Scholar 

  30. Haisch A, Gröger A, Radke C, Ebmeyer J, Sudhoff H, Grasnick G, Jahnke V, Burmester G, Sittinger M (2000) Macroencapsulation of human cartilage implants: pilot study with polyelectrolyte complex membrane encapsulation. Biomaterials 21:1561–1566

    Article  Google Scholar 

  31. Risbud MV, Bhargava S, Bhonde RR (2003) In vivo biocompatibility evaluation of cellulose macrocapsules for islet immunoisolation: implications of low molecular weight cut‐off. J Biomed Mater Res A 66:86–92

    Article  Google Scholar 

  32. Prochorov A, Tretjak S, Goranov V, Glinnik A, Goltsev M (2008) Treatment of insulin dependent diabetes mellitus with intravascular transplantation of pancreatic islet cells without immunosuppressive therapy. Adv Med Sci 53:240–244

    Article  Google Scholar 

  33. De Vos P, De Haan B, Wolters G, Strubbe J, Van Schilfgaarde R (1997) Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40:262–270

    Article  Google Scholar 

  34. De Vos P, Vegter D, De Haan BJ, Strubbe JH, Bruggink JE, Van Schilfgaarde R (1996) Kinetics of intraperitoneally infused insulin in rats: functional implications for the bioartificial pancreas. Diabetes 45:1102–1107

    Article  Google Scholar 

  35. Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64

    Article  Google Scholar 

  36. Vos PD, Andersson A, Tam S, Faas M, Halle J (2006) Advances and barriers in mammalian cell encapsulation for treatment of diabetes. Immunol Endocr Metab Agents Med Chem 6:139–153

    Article  Google Scholar 

  37. Lee M-K, Bae YH (2000) Cell transplantation for endocrine disorders. Adv Drug Deliv Rev 42:103–120

    Article  Google Scholar 

  38. Machluf M, Orsola A, Boorjian S, Kershen R, Atala A (2003) Microencapsulation of Leydig cells: a system for testosterone supplementation. Endocrinology 144:4975–4979

    Article  Google Scholar 

  39. Kim C, Lee KS, Kim YE, Lee K-J, Lee SH, Kim TS, Kang JY (2009) Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability. Lab Chip 9:1294–1297

    Article  Google Scholar 

  40. Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci 105:9522–9527

    Article  Google Scholar 

  41. Sugiura S, Oda T, Aoyagi Y, Satake M, Ohkohchi N, Nakajima M (2008) Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array. Lab Chip 8:1255–1257

    Article  Google Scholar 

  42. Song W, An D, Kao D, Lu Y-C, Dai G, Chen S, Ma M (2014) Nanofibrous microposts and microwells of controlled shapes and their hybridization with hydrogels for cell encapsulation. ACS Appl Mater Interfaces

    Google Scholar 

  43. Ennis W, James DT (1950) A simple apparatus for producing droplets of uniform size from small volumes of liquids. Science 112:434–436

    Article  Google Scholar 

  44. Sparks RE, Salemme RM, Meier PM, Litt MH, Lindan O (1969) Removal of waste metabolites in uremia by microencapsulated reactants. ASAIO J 15:353–358

    Google Scholar 

  45. Steele J, Hall J-P, Poncelet D, Neufeld R (2014) Therapeutic cell encapsulation techniques and applications in diabetes. Adv Drug Deliv Rev 67:74–83

    Article  Google Scholar 

  46. Milton Van Dyke (1982) An album of fluid motion. The Parabolic Press. United States. ISBN: 0-915760-02-9

    Google Scholar 

  47. Park J, Chang H (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  Google Scholar 

  48. Zimmermann H, Shirley SG, Zimmermann U (2007) Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7:314–320

    Article  Google Scholar 

  49. Jork A, Thürmer F, Cramer H, Zimmermann G, Gessner P, Hämel K, Hofmann G, Kuttler B, Hahn HJ, Josimovic-Alasevic O, Fritsch KG, Zimmermann U (2000) Biocompatible alginate from freshly collected Laminaria pallida for implantation. Appl Microbiol Biotechnol 53:224–229

    Article  Google Scholar 

  50. Zimmermann U, Mimietz S, Zimmermann H, Hillgartner M, Schneider H, Ludwig J, Hasse C, Haase A, Rothmund M, Fuhr G (2000) Hydrogel-based non-autologous cell and tissue therapy. Biotechniques 29:564–581

    Google Scholar 

  51. Poncelet D, Neufeld R, Goosen M, Burgarski B, Babak V (1999) Formation of microgel beads by electric dispersion of polymer solutions. AIChE J 45:2018–2023

    Article  Google Scholar 

  52. Ma M, Chiu A, Sahay G, Doloff JC, Dholakia N, Thakrar R, Cohen J, Vegas A, Chen D, Bratlie KM (2013) Core-shell hydrogel microcapsules for improved islets encapsulation. Adv Healthc Mater 2:667–672

    Article  Google Scholar 

  53. Lu Y-C, Song W, An D, Kim BJ, Schwartz R, Wu M, Ma M (2014) Designing compartmentalized hydrogel microparticles for cell encapsulation and scalable 3D cell culture. J Mater Chem B 3:353. doi:10.1039/C4tb01735h

    Article  Google Scholar 

  54. Serp D, Cantana E, Heinzen C, Von Stockar U, Marison I (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng 70:41–53

    Article  Google Scholar 

  55. Prüße E, Jahnz, U, Wittlich P, Breford J, Vorlop K-D (2002) Bead production with jetcutting and rotating disc/nozzle technologies. Landbauforschung Völkenrode Sh 241:1–10

    Google Scholar 

  56. Strutt JW, Rayleigh L (1878) On the instability of jets. Proc London Math Soc 10:4–13

    Google Scholar 

  57. Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, Pileggi A, Molano D, Ricordi C, Stabler CL, Hubbell JA (2014) Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A 111:10514–10519. doi:10.1073/Pnas.1402216111

    Article  Google Scholar 

  58. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  Google Scholar 

  59. Edd JF, Di Carlo D, Humphry KJ, Koester S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264

    Article  Google Scholar 

  60. Kim C, Chung S, Kim YE, Lee KS, Lee SH, Oh KW, Kang JY (2011) Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab Chip 11:246–252

    Article  Google Scholar 

  61. Park D, Mun C, Kang E, No D, Ju J, Lee S (2014) One-stop microfiber spinning and fabrication of a fibrous cell-encapsulated scaffold on a single microfluidic platform. Biofabrication 6:024108

    Article  Google Scholar 

  62. Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Dini F, Barsotti G, Carlucci F, Chiellini F (2011) Development of 3D wet-spun polymeric scaffolds loaded with antimicrobial agents for bone engineering. J Bioact Compat Polym 26:478–492

    Article  Google Scholar 

  63. Kang E, Choi YY, Chae SK, Moon JH, Chang JY, Lee SH (2012) Microfluidic spinning of flat alginate fibers with grooves for cell‐aligning scaffolds. Adv Mater 24:4271–4277

    Article  Google Scholar 

  64. Hwang CM, Khademhosseini A, Park Y, Sun K, Lee S-H (2008) Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 24:6845–6851

    Article  Google Scholar 

  65. Hwang C, Park Y, Park J, Lee K, Sun K, Khademhosseini A, Lee S (2009) Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed Microdevices 11:739–746

    Article  Google Scholar 

  66. Lee BR, Lee KH, Kang E, Kim D-S, Lee S-H (2011) Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of Hepg2 cells in fibers. Biomicrofluidics 5:022208

    Article  Google Scholar 

  67. Lee KH, Shin SJ, Park Y, Lee SH (2009) Synthesis of cell‐laden alginate hollow fibers using microfluidic chips and microvascularized tissue‐engineering applications. Small 5:1264–1268

    Article  Google Scholar 

  68. Jun Y, Kim MJ, Hwang YH, Jeon E, Kang AR, Lee S-H, Lee DY (2013) Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 34:8122–8130

    Article  Google Scholar 

  69. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12:584–590

    Article  Google Scholar 

  70. An D, Ji Y, Chiu A, Lu Y-C, Song W, Zhai L, Qi L, Luo D, Ma M (2015) Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (needs) for cell therapies. Biomaterials 37:40–48

    Article  Google Scholar 

  71. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544

    Article  Google Scholar 

  72. Koh W-G, Revzin A, Pishko MV (2002) Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462

    Article  Google Scholar 

  73. Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM, Akhyari P, Khademhosseini A (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951

    Article  Google Scholar 

  74. Chung BG, Hatton TA (2008) Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8:1056–1061

    Article  Google Scholar 

  75. Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J, Langer R, Burdick JA (2006) Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 79:522–532

    Article  Google Scholar 

  76. Mcguigan AP, Bruzewicz DA, Glavan A, Butte M, Whitesides GM (2008) Cell encapsulation in sub-mm sized gel modules using replica molding. PLoS One 3, E2258

    Article  Google Scholar 

  77. Matsunaga YT, Morimoto Y, Takeuchi S (2011) Molding cell beads for rapid construction of macroscopic 3D tissue architecture. Adv Mater 23:H90–H94

    Article  Google Scholar 

  78. Poncelet D, Lencki R, Beaulieu C, Halle J, Neufeld R, Fournier A (1992) Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol 38:39–45

    Article  Google Scholar 

  79. Hoesli CA, Raghuram K, Kiang RL, Mocinecová D, Hu X, Johnson JD, Lacík I, Kieffer TJ, Piret JM (2011) Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation. Biotechnol Bioeng 108:424–434

    Article  Google Scholar 

  80. Hoesli CA, Kiang RL, Mocinecová D, Speck M, Mošková DJ, Donald-Hague C, Lacík I, Kieffer TJ, Piret JM (2012) Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. J Biomed Mater Res B Appl Biomater 100:1017–1028

    Article  Google Scholar 

  81. Krol S, Del Guerra S, Grupillo M, Diaspro A, Gliozzi A, Marchetti P (2006) Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett 6:1933–1939

    Article  Google Scholar 

  82. Miura S, Teramura Y, Iwata H (2006) Encapsulation of islets with ultra-thin polyion complex membrane through poly (ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 27:5828–5835

    Article  Google Scholar 

  83. Contreras JL, Xie D, Mays J, Smyth CA, Eckstein C, Rahemtulla FG, Young CJ, Anthony Thompson J, Bilbao G, Curiel DT (2004) A novel approach to xenotransplantation combining surface engineering and genetic modification of isolated adult porcine islets. Surgery 136:537–547

    Article  Google Scholar 

  84. Yun Lee D, Hee Nam J, Byun Y (2007) Functional and histological evaluation of transplanted pancreatic islets immunoprotected by pegylation and cyclosporine for 1 year. Biomaterials 28:1957–1966

    Article  Google Scholar 

  85. Cruise GM, Hegre OD, Scharp DS, Hubbell JA (1998) A sensitivity study of the key parameters in the interfacial photopolymerization of poly (ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng 57:655–665

    Article  Google Scholar 

  86. Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly (ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287–1294

    Article  Google Scholar 

  87. Cruise GM, Hegre OD, Lamberti FV, Hager SR, Hill R, Scharp DS, Hubbell JA (1998) In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly (ethylene glycol) diacrylate membranes. Cell Transplant 8:293–306

    Google Scholar 

  88. Teramura Y, Kaneda Y, Iwata H (2007) Islet-encapsulation in ultra-thin layer-by-layer membranes of poly (vinyl alcohol) anchored to poly (ethylene glycol)-lipids in the cell membrane. Biomaterials 28:4818–4825

    Article  Google Scholar 

  89. Teramura Y, Oommen OP, Olerud J, Hilborn J, Nilsson B (2013) Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimide-conjugated PEG-lipid with multifunctional crosslinkers. Biomaterials 34:2683–2693

    Article  Google Scholar 

  90. Wang T, Adcock J, Kühtreiber W, Qiang D, Salleng KJ, Trenary I, Williams P (2008) Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression. Transplantation 85:331–337

    Article  Google Scholar 

  91. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, Mckay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  Google Scholar 

  92. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  Google Scholar 

  93. Dolgin E (2014) Encapsulate this. Nat Med 20:9–11

    Article  Google Scholar 

  94. Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS (2008) Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog Polym Sci 33:167–179

    Article  Google Scholar 

  95. Orive G, Gascón AR, Hernández RM, Igartua M, Luis Pedraz J (2003) Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci 24:207–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglin Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, Y., Ma, M. (2016). Microscale Cell Encapsulation Materials and Fabrication Techniques for Type 1 Diabetes. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics