Advertisement

Quantitative Analysis of Nonlinear Water-Waves: A Perspective of an Experimentalist

  • Lev ShemerEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 908)

Abstract

In the present review the emphasis is put on laboratory studies of propagating water waves where experiments were designed with the purpose to enable juxtaposing the measurement results with the theoretical predictions, thus providing a basis for evaluation of the domain of validity of various nonlinear theoretical model of different complexity. In particular, evolution of deterministic wave groups of different shapes and several values of characteristic nonlinearity is studied in deep and intermediate-depth water. Experiments attempting to generate extremely steep (rogue) waves are reviewed in greater detail. Relation between the kinematics of steep nonlinear waves and incipient breaking is considered. Discussion of deterministic wave systems is followed by review of laboratory experiments on propagation of numerous realizations of random wave groups with different initial spectra. The experimental results are compared with the corresponding Monte-Carlo numerical simulations based on different models.

Notes

Acknowledgements

The support of this study by Grant # 2010219 from US-Israel Binational Science Foundation is gratefully acknowledged.

References

  1. 1.
    Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: Exact first-order solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809–818 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Annenkov, S.Y., Shrira, V.I.: Direct numerical simulation of downshift and inverse cascade for water wave turbulence. Phys. Rev. Lett. 96(20), 204501 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Annenkov, S.Y., Shrira V.I.: Role of non-resonant interactions in the evolution of nonlinear random water wave fields. Fluid Mech. 561, 181–207 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar
  4. 4.
    Annenkov, S.Y., Shrira, V.I.: Evolution of kurtosis for wind waves. Geophys. Res. Lett. 36(13), L13603 (2009)CrossRefADSGoogle Scholar
  5. 5.
    Barnes, T., Peregrine, D.H.: Wave groups approaching a beach: full irrotational flow computations. In: International Conference on Coastal Research in Terms of Large Scale Experiments, Abstracts, Poland, pp. 7–8 (1995)Google Scholar
  6. 6.
    Brinch-Nielsen, U., Jonsson, I.G.: Fourth order evolution equation and stability analysis for Stokes waves on arbitrary water depth. Wave Motion 8, 455–472 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brown, M.G., Jensen A.: Experiments on focusing unidirectional water waves. J. Geophys. Res. 106(C8) 917–16, 928 (2001)Google Scholar
  8. 8.
    Chabchoub, A., Hoffmann N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Dean, R.G., Dalrymple, R.A.: Water Wave Mechanics for Engineers and Scientists. World Scientific, Singapore (1991)Google Scholar
  10. 10.
    Dorfman, B., Shemer, L.: Video image-based technique for measuring wave field evolution in a laboratory wave tank. In: Guedes Soares, C., Kolev, P. (eds.) Maritime Industry, Ocean Engineering and Coastal Resources, vol. 2, pp. 711–720. Taylor & Francis, London (2007)Google Scholar
  11. 11.
    Dysthe, K.B.: Note on the modification of the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A369, 105–114 (1979)CrossRefADSGoogle Scholar
  12. 12.
    Flick, R.E., Guza, R.T.: Paddle generated waves in laboratory channels. J. Waterway Port Coast. Ocean Eng. 106, 79–96 (1980)Google Scholar
  13. 13.
    Goda, Y.: Random Seas and Design of Marine Structures. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  14. 14.
    Gramstad, O., Trulsen, K.: Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid. Mech. 670, 404–426 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  15. 15.
    Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, Boston (1996)zbMATHGoogle Scholar
  16. 16.
    Hasimoto, H., Ono, J.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33, 805–811 (1972)CrossRefADSGoogle Scholar
  17. 17.
    Hasselmann, K.: On the nonlinear energy transfer in a gravity wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481–500 (1962)Google Scholar
  18. 18.
    Hasselmann, K., Barnett, T.P, Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Krusemann, P., Meerburg, A., Müller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H.: Measurements of wind-wave growth and swell decay during the Joint North Sea. Deutsche Hydrographische Zeitschrift 8(Suppl A), 1–95 (1973)Google Scholar
  19. 19.
    Hogan, S.J.: The potential form of the fourth-order evolution equation for deep-water gravity-capillary waves. Phys. Fluids 29, 3479–3480 (1986)MathSciNetCrossRefADSzbMATHGoogle Scholar
  20. 20.
    Janssen, P.A.E.M.: Nonlinear four-wave interactions and freak waves. J. Phys. Ocean. 33, 863–884 (2003)CrossRefADSGoogle Scholar
  21. 21.
    Jiao, H.-Y.: Experimental measurements and numerical simulations of nonlinear water-wave groups. Ph.D. Thesis, Tel-Aviv University (1999)Google Scholar
  22. 22.
    Johannessen, T.B., Swan, C.: On the nonlinear dynamics of wave groups produced by the focusing of surface-water waves Proc. R. Soc. A459, 1021–1052 (2003)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)zbMATHGoogle Scholar
  24. 24.
    Kharif, C., Kraenkel, R., Manna, M., Thomas, R.: The modulational instability in deep water under action of wind and dissipation. J. Fluid Mech. 664, 138–149 (2010)MathSciNetCrossRefADSzbMATHGoogle Scholar
  25. 25.
    Kit, E., Shemer, L.: On dissipation coefficients in a wave tank. Acta Mech. 77, 171–180 (1989)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kit, E., Shemer, L.: Spatial versions of the Zakharov and Dysthe evolution equations for deep water gravity waves. J. Fluid Mech. 450, 201–205 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  27. 27.
    Kit, E., Pelinovsky, E., Talipova, T.: Transformation of probability distribution of wind waves in coastal zone. In: Proceedings of the COPEDEC IV, Brazil, pp. 2344–2353 (1995)Google Scholar
  28. 28.
    Kit, E., Shemer, L., Pelinovsky, E., Talipova, T., Eitan, O., Jiao, H.-Y.: Nonlinear wave group evolution in shallow water. J. Waterway Port Coast. Ocean Eng. 126, 221–228 (2000)CrossRefGoogle Scholar
  29. 29.
    Krasitskii, V.P.: On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 1–20 (1994)MathSciNetCrossRefADSzbMATHGoogle Scholar
  30. 30.
    Kuznetsov, E.A.: Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. (English Transl.) 22, 575–577 (1977)Google Scholar
  31. 31.
    Lake, B.M., Yuen, H.C., Rungaldier, H., Ferguson, W.E.: Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train. J. Fluid Mech. 83, 49–74 (1977)Google Scholar
  32. 32.
    Lo, E., Mei, C.C.: A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation. J. Fluid Mech. 150, 395–416 (1985)CrossRefADSzbMATHGoogle Scholar
  33. 33.
    Longuet-Higgins, M.: On the statistical distribution of the heights of sea waves. J. Mar. Res. 11, 245–266 (1952)Google Scholar
  34. 34.
    Longuet-Higgins, M.: The effect of nonlinearities on statistical distributions in the theory of sea waves. Fluid Mech. 17, 459–480 (1963)MathSciNetCrossRefADSzbMATHGoogle Scholar
  35. 35.
    Longuet-Higgins, M.: The instabilities of gravity waves of finite amplitude in deep water. II. Subharmonics. Proc. R. Soc. Lond. Ser. A 360, 489–505 (1978)MathSciNetCrossRefADSzbMATHGoogle Scholar
  36. 36.
    Ma, Y.C.: The perturbed plane wave solutions of the cubic nonlinear Schrödinger equation. Stud. Appl. Math. 60, 43 (1979)MathSciNetADSGoogle Scholar
  37. 37.
    McLean, J.W.: Instabilities of finite amplitude water waves. Fluid Mech. 114, 331–341 (1982)CrossRefADSzbMATHGoogle Scholar
  38. 38.
    McLean, J.W., Ma, Y.C., Martin, D.U., Saffman, P.G., Yuen, H.C.: A new type of three-dimensional instability of finite amplitude gravity waves. Phys. Rev. Lett. 46, 817–820 (1981)MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    Mei, C.C.: The Applied Dynamics of Ocean Surface Waves. World Scientific, Singapore (1989)zbMATHGoogle Scholar
  40. 40.
    Melville, W.K.: Wave modulation and breakdown. Fluid Mech. 128, 489–506 (1983)CrossRefADSGoogle Scholar
  41. 41.
    Mori, N., Onorato, M., Janssen, P.A.E.M., Osborne, A.R., Serio, M.: On the extreme statistics of long-crested deep water waves: theory and experiments. J. Geophys. Res. 112, C09011 (2007)ADSGoogle Scholar
  42. 42.
    Nazarenko, S.V.: Wave Turbulence. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Naess, A.: On the distribution of crest-to-trough wave heights. Ocean Eng. 12, 221–234 (1985)CrossRefGoogle Scholar
  44. 44.
    Ochi, M.K.: Stochastic analysis and probabilistic prediction of random seas. Adv. Hydrosci. 13, 217–375 (1982)CrossRefGoogle Scholar
  45. 45.
    Onorato, M, Osborne, A.R, Serio, M, Cavaleri, L.: Modulational instability and non-Gaussian statistics in experimental random water-wave trains. Phys. Fluid. 17, 078101 (2005)CrossRefADSGoogle Scholar
  46. 46.
    Onorato, M, Osborne, A.R, Serio, M, Cavaleri, L., Brandini, C., Stansberg, C.T.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. Eur. J. Mech. B Fluids 25, 586–601 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar
  47. 47.
    Onorato M., Osborne A.R., Serio M.: On the relation between two numerical methods for the computation of random gravity waves. Eur. J. Mech. B Fluids 26, 43–48 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  48. 48.
    Onorato, M., Onorato, M., Cavalieri, L., Fouques, S., Gramstad, O., Jansses, P.A.E.M., Monbaliu, J., Osborne, A.R., Pakozdi, C., Serio, M., Stansberg, C.T., Toffoli, A., Trulsen, K.: Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J. Fluid Mech. 627, 235–257 (2009)CrossRefADSzbMATHGoogle Scholar
  49. 49.
    Pelinovsky, E., Kharif, C.: Simplified model of the freak wave formation from the random wave field. In: Miloh, T., Zilman, G. (eds.) Proceedings of 15th International Workshop on Water Waves and Floating Bodies, Caesaria, pp. 142–145 (2000)Google Scholar
  50. 50.
    Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Phillips, O.M.: On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9, 193–217 (1960)Google Scholar
  52. 52.
    Phillips, O.M.: Wave interactions: the evolution of an idea. Fluid Mech. 106, 215–227 (1981)CrossRefADSzbMATHGoogle Scholar
  53. 53.
    Schäffer, H.A.: Second order wavemaker theory for irregular waves. Ocean Eng. 23, 47–88 (1996)CrossRefGoogle Scholar
  54. 54.
    Shahul Hameed, T.S., Baba, M.: Wave height distribution in shallow water. Ocean Eng. 12, 309–319 (1985)CrossRefGoogle Scholar
  55. 55.
    Shemer, L: On Benjamin-Feir instability and evolution of a nonlinear wave with finite-amplitude sidebands. Nat. Hazards Earth Syst. Sci. 10, 2421–2427 (2010)CrossRefADSGoogle Scholar
  56. 56.
    Shemer, L.: The advantages and limitations of the nonlinear Schrödinger equation in description of evolution of nonlinear water-wave groups. Proc. Est. Acad. Sci. 64(3), 17 (2015)Google Scholar
  57. 57.
    Shemer, L., Alperovich, L.: Peregrine breather revisited. Phys. Fluids 25(1) 051701 (2013)CrossRefADSGoogle Scholar
  58. 58.
    Shemer, L., Chamesse, M.: Experiments on nonlinear gravity-capillary waves. Fluid Mech. 380, 205–232 (1999)CrossRefADSzbMATHGoogle Scholar
  59. 59.
    Shemer, L., Dorfman, B.: Experimental and numerical study of spatial and temporal evolution of nonlinear wave groups. Nonlinear Process. Geophys. 15, 931–942 (2008)CrossRefADSGoogle Scholar
  60. 60.
    Shemer, L., Ee, B.K.: Steep unidirectional wave groups - fully nonlinear simulations vs. experiments. Proc. 34th Int. Conf. on Offshore Mechanics and Arctic Engineering, St. John’s, Newfoundland, Canada (ASME Paper OMAE2015-41057)Google Scholar
  61. 61.
    Shemer, L., Liberzon, D.: Lagrangian kinematics of steep waves up to the inception of a spilling breaker. Phys. Fluids 26(1), 016601 (2014)CrossRefADSGoogle Scholar
  62. 62.
    Shemer, L., Sergeeva, A.: An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. J. Geophys. Res. 114, C01015 (2009)ADSGoogle Scholar
  63. 63.
    Shemer, L., Kit, E., Miloh, T.: Measurements of two- and three-dimensional waves in a channel including the vicinity of cut-off frequencies. Exp. Fluids 5, 66–72 (1987)Google Scholar
  64. 64.
    Shemer, L., Kit, E., Jiao, H.-Y, Eitan, O.: Experiments on nonlinear wave groups in intermediate water depth. J. Waterway Port Coast. Ocean Eng. 124, 320–327 (1998)CrossRefGoogle Scholar
  65. 65.
    Shemer, L., Jiao, H.-Y., Kit, E., Agnon, Y.: Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation. Fluid Mech. 427, 107–129 (2001)CrossRefADSzbMATHGoogle Scholar
  66. 66.
    Shemer, L., Kit, E., Jiao, H.-Y.: An experimental and numerical study of the spatial evolution of unidirectional nonlinear water-wave groups. Phys. Fluids 14, 3380–3390 (2002)CrossRefADSGoogle Scholar
  67. 67.
    Shemer, L., Goulitski, K., Kit, E.: Evolution of wide-spectrum wave groups in a tank: an experimental and numerical study. Eur. J. Mech. B Fluids 26, 193 (2007)CrossRefADSzbMATHGoogle Scholar
  68. 68.
    Shemer, L., Sergeeva, A., Slunyaev, A.: Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random field evolution: experimental validation. Phys. Fluids 22, 011601 (2010)CrossRefGoogle Scholar
  69. 69.
    Shemer, L., Sergeeva, A., Liberzon, D.: Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves. J. Geophys. Res. 115, C12039 (2010)CrossRefADSGoogle Scholar
  70. 70.
    Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11–22 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Slunyaev, V.V., Shrira, V.I.: On the highest non-breaking wave in a group: fully nonlinear water wave breathers versus weakly nonlinear theory. Fluid Mech. 735, 203–248 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  72. 72.
    Socquet-Juglard, H., Dysthe, K, Trulsen, K., Krogstad, H.E., Liu, J.: Distribution of surface gravity waves during spectral changes. Fluid Mech. 542, 195–216 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  73. 73.
    Stiassnie, M.: Note on the modified nonlinear Schrödinger equation for deep water waves. Wave Motion 6, 431–433 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Stiassnie, M., Shemer, L.: On modifications of the Zakharov equation for surface gravity waves. Fluid Mech. 143, 47–67 (1984)MathSciNetCrossRefADSzbMATHGoogle Scholar
  75. 75.
    Stiassnie, M., Shemer, L.: On the interaction of four water-waves. Wave Motion 41, 307–328 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Su, M.Y.: Evolution of groups of gravity waves with moderate to high steepness. Phys. Fluids 25, 2167–2174 (1982)CrossRefADSGoogle Scholar
  77. 77.
    Tayfun, M.A.: Narrow-band nonlinear sea waves. J. Geophys. Res. 85(C3), 1548–1552 (1980)CrossRefADSGoogle Scholar
  78. 78.
    Tayfun, M.A.: Statistics of nonlinear wave crests and groups. Ocean Eng. 33, 1589–1622 (2006)CrossRefGoogle Scholar
  79. 79.
    Tayfun, M.A., Fedele, F.: Wave height distributions and nonlinear effects. Ocean Eng. 34, 1631–1649 (2007)CrossRefGoogle Scholar
  80. 80.
    Trulsen, K., Dysthe, K.B.: A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281–289 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Trulsen, K., Dysthe, K.B.: Frequency downshift in three-dimensional wave trains in a deep basin. Fluid Mech. 352, 359–373 (1997)MathSciNetCrossRefADSzbMATHGoogle Scholar
  82. 82.
    Trulsen, K., Kliakhandler, I., Dysthe, K.B., Velarde, M.G.: On weakly nonlinear modulation of waves on deep water. Phys. Fluids 12, 2432–2437 (2000)MathSciNetCrossRefADSGoogle Scholar
  83. 83.
    Waseda, T., Kinishita, T., Tamura, H.: Evolution of a random directional wave and freak wave occurrence. J. Phys. Ocean 39, 621–639 (2009)CrossRefADSGoogle Scholar
  84. 84.
    Yuen, H.C., Lake, B.M.: Nonlinear deep water waves: theory and experiment. Phys. Fluids 18, 956–960 (1975)CrossRefADSzbMATHGoogle Scholar
  85. 85.
    Yuen, H.C., Lake, B.M.: Nonlinear dynamics of deep water gravity waves. Adv. Appl. Mech. 22, 67–229 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on a surface of deep fluid. J. Appl. Mech. Tech. Phys. (English Transl.) 2, 190–194 (1968)Google Scholar
  87. 87.
    Zakharov, V.: Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech. B Fluids 18, 327–344 (1999)MathSciNetCrossRefADSzbMATHGoogle Scholar
  88. 88.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)MathSciNetADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations