Skip to main content

Modeling Water Waves Beyond Perturbations

  • Chapter

Part of the Lecture Notes in Physics book series (LNP,volume 908)

Abstract

In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a ‘relaxed’ variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein–Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.

Keywords

  • Velocity Field
  • Variational Principle
  • Water Wave
  • Lagrangian Density
  • Gordon Equation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20690-5_7
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-20690-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 7.1

Notes

  1. 1.

    For example \(\tilde{\boldsymbol{u}} = \boldsymbol{u}(y =\eta )\), \(\breve{v} = v(y = -d)\).

  2. 2.

    For two-dimensional vectors \(\boldsymbol{a} = (a_{1},a_{2})\) and \(\boldsymbol{b} = (b_{1},b_{2})\), \(\boldsymbol{a \times b} = a_{1}b_{2} - a_{2}b_{1}\) is a scalar.

  3. 3.

    http://en.wikipedia.org/wiki/Luke’s_variational_principle.

  4. 4.

    \(\bar{u} = \frac{1} {h}\int _{-d}^{\eta }u\,\mathrm{d}y\).

  5. 5.

    R. B. Laughlin et al. earned the 1998 Physics Nobel price.

References

  1. Boussinesq, J.V.: Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris Sér. A-B 72, 755–759 (1871)

    MATH  Google Scholar 

  2. Broer, L.J.F.: On the Hamiltonian theory of surface waves. Appl. Sci. Res. 29(6), 430–446 (1974)

    MathSciNet  CrossRef  ADS  MATH  Google Scholar 

  3. Clamond, D.: Variational principles for water waves beyond perturbations. http://www-old.newton.ac.uk/programmes/TWW/seminars/2014071814002.html (2014)

  4. Clamond, D., Dutykh, D.: Practical use of variational principles for modeling water waves. Phys. D 241(1), 25–36 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Craik, A.D.D.: The origins of water wave theory. Ann. Rev. Fluid Mech. 36, 1–28 (2004)

    MathSciNet  CrossRef  ADS  Google Scholar 

  6. Dutykh, D., Clamond, D.: Shallow water equations for large bathymetry variations. J. Phys. A Math. Theor. 44(33), 332001 (2011)

    MathSciNet  CrossRef  Google Scholar 

  7. Dutykh, D., Clamond, D., Chhay, M.: Numerical study of the generalised Klein-Gordon equations. Phys. D, 304–305, 23–33 (2015)

    MathSciNet  CrossRef  Google Scholar 

  8. Dutykh, D., Clamond, D., Milewski, P., Mitsotakis, D.: Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations. Eur. J. Appl. Math. 24(05), 761–787 (2013). http://hal.archives-ouvertes.fr/hal-00587994/

    Google Scholar 

  9. Dysthe, K.B.: Note on a modification to the nonlinear Schrödinger equation for application to deep water. Proc. R. Soc. Lond. A 369, 105–114 (1979)

    CrossRef  ADS  MATH  Google Scholar 

  10. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison-Wesley, San Francisco (1964)

    Google Scholar 

  11. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison–Wesley, San Francisco (2001)

    Google Scholar 

  12. Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246 (1976)

    CrossRef  ADS  MATH  Google Scholar 

  13. Green, A.E., Laws, N., Naghdi, P.M.: On the theory of water waves. Proc. R. Soc. Lond. A 338, 43–55 (1974)

    MathSciNet  CrossRef  ADS  MATH  Google Scholar 

  14. Grue, J., Clamond, D., Huseby, M., Jensen, A.: Kinematics of extreme waves in deep water. Appl. Ocean Res.25, 355–366 (2003)

    CrossRef  Google Scholar 

  15. Jensen, A., Clamond, D., Huseby, M., Grue, J.: On local and convective accelerations in steep wave events. Ocean Eng. 34, 426–435 (2007)

    CrossRef  Google Scholar 

  16. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  17. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39(5), 422–443 (1895)

    CrossRef  MATH  Google Scholar 

  18. Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, New York (1970)

    MATH  Google Scholar 

  19. Laughlin, R.B.: Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50(18), 1395–1398 (1983)

    CrossRef  ADS  Google Scholar 

  20. Li, Y.A.: Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations. J. Nonlinear Math. Phys. 9(1), 99–105 (2002)

    CrossRef  ADS  Google Scholar 

  21. Luke, J.C.: A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 375–397 (1967)

    MathSciNet  CrossRef  ADS  Google Scholar 

  22. Mei, C.C.: The Applied Dynamics of Water Waves. World Scientific, Singapore (1989)

    Google Scholar 

  23. Murayama, H.: Berkley’s 221A Lecture Notes: Variational Method. http://hitoshi.berkeley.edu/221a/index.html (2006)

  24. Petrov, A.A.: Variational statement of the problem of liquid motion in a container of finite dimensions. Prikl. Math. Mekh. 28(4), 917–922 (1964)

    MATH  Google Scholar 

  25. Radder, A.C.: Hamiltonian dynamics of water waves. Adv. Coast. Ocean Eng. 4, 21–59 (1999)

    CrossRef  Google Scholar 

  26. Rajchenbach, J., Leroux, A., Clamond, D.: New standing solitary waves in water. Phys. Rev. Lett. 107(2), 024502 (2011)

    CrossRef  ADS  Google Scholar 

  27. Rajchenbach, J., Clamond, D., Leroux, A.: Observation of Star-Shaped Surface Gravity Waves. Phys. Rev. Lett. 110(9), 094502 (2013)

    CrossRef  ADS  Google Scholar 

  28. Salmon, R.: Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225–256 (1988)

    CrossRef  ADS  Google Scholar 

  29. Serre, F.: Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille blanche 8, 374–388 (1953)

    CrossRef  Google Scholar 

  30. Serre, F.: Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille blanche 8, 830–872 (1953)

    CrossRef  Google Scholar 

  31. Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. Interscience, New York (1957)

    MATH  Google Scholar 

  32. Stoker, J.J.: Water waves, the Mathematical Theory with Applications. Wiley, New York (1958)

    Google Scholar 

  33. Su, C.H., Gardner, C.S.: KdV equation and generalizations. Part III. Derivation of Korteweg-de Vries equation and Burgers equation. J. Math. Phys. 10, 536–539 (1969)

    MathSciNet  MATH  Google Scholar 

  34. Su, C.H., Mirie, R.M.: On head-on collisions between two solitary waves. J. Fluid Mech. 98, 509–525 (1980)

    MathSciNet  CrossRef  ADS  MATH  Google Scholar 

  35. Wehausen, J.V., Laitone, E.V.: Surface waves. Handbuch der Physik 9, 446–778 (1960)

    MathSciNet  CrossRef  ADS  Google Scholar 

  36. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1999)

    CrossRef  MATH  Google Scholar 

  37. Wu, T.Y.: A unified theory for modeling water waves. Adv. Appl. Mech. 37, 1–88 (2001)

    CrossRef  Google Scholar 

  38. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)

    CrossRef  ADS  Google Scholar 

  39. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Usp. Fiz. Nauk 167, 1137–1168 (1997)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Clamond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clamond, D., Dutykh, D. (2016). Modeling Water Waves Beyond Perturbations. In: Tobisch, E. (eds) New Approaches to Nonlinear Waves. Lecture Notes in Physics, vol 908. Springer, Cham. https://doi.org/10.1007/978-3-319-20690-5_7

Download citation