Boussinesq, J.V.: Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris Sér. A-B 72, 755–759 (1871)
MATH
Google Scholar
Broer, L.J.F.: On the Hamiltonian theory of surface waves. Appl. Sci. Res. 29(6), 430–446 (1974)
MathSciNet
CrossRef
ADS
MATH
Google Scholar
Clamond, D.: Variational principles for water waves beyond perturbations. http://www-old.newton.ac.uk/programmes/TWW/seminars/2014071814002.html (2014)
Clamond, D., Dutykh, D.: Practical use of variational principles for modeling water waves. Phys. D 241(1), 25–36 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Craik, A.D.D.: The origins of water wave theory. Ann. Rev. Fluid Mech. 36, 1–28 (2004)
MathSciNet
CrossRef
ADS
Google Scholar
Dutykh, D., Clamond, D.: Shallow water equations for large bathymetry variations. J. Phys. A Math. Theor. 44(33), 332001 (2011)
MathSciNet
CrossRef
Google Scholar
Dutykh, D., Clamond, D., Chhay, M.: Numerical study of the generalised Klein-Gordon equations. Phys. D, 304–305, 23–33 (2015)
MathSciNet
CrossRef
Google Scholar
Dutykh, D., Clamond, D., Milewski, P., Mitsotakis, D.: Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations. Eur. J. Appl. Math. 24(05), 761–787 (2013). http://hal.archives-ouvertes.fr/hal-00587994/
Google Scholar
Dysthe, K.B.: Note on a modification to the nonlinear Schrödinger equation for application to deep water. Proc. R. Soc. Lond. A 369, 105–114 (1979)
CrossRef
ADS
MATH
Google Scholar
Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Addison-Wesley, San Francisco (1964)
Google Scholar
Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison–Wesley, San Francisco (2001)
Google Scholar
Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246 (1976)
CrossRef
ADS
MATH
Google Scholar
Green, A.E., Laws, N., Naghdi, P.M.: On the theory of water waves. Proc. R. Soc. Lond. A 338, 43–55 (1974)
MathSciNet
CrossRef
ADS
MATH
Google Scholar
Grue, J., Clamond, D., Huseby, M., Jensen, A.: Kinematics of extreme waves in deep water. Appl. Ocean Res.25, 355–366 (2003)
CrossRef
Google Scholar
Jensen, A., Clamond, D., Huseby, M., Grue, J.: On local and convective accelerations in steep wave events. Ocean Eng. 34, 426–435 (2007)
CrossRef
Google Scholar
Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (2004)
Google Scholar
Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39(5), 422–443 (1895)
CrossRef
MATH
Google Scholar
Lanczos, C.: The Variational Principles of Mechanics. Dover Publications, New York (1970)
MATH
Google Scholar
Laughlin, R.B.: Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett. 50(18), 1395–1398 (1983)
CrossRef
ADS
Google Scholar
Li, Y.A.: Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations. J. Nonlinear Math. Phys. 9(1), 99–105 (2002)
CrossRef
ADS
Google Scholar
Luke, J.C.: A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 375–397 (1967)
MathSciNet
CrossRef
ADS
Google Scholar
Mei, C.C.: The Applied Dynamics of Water Waves. World Scientific, Singapore (1989)
Google Scholar
Murayama, H.: Berkley’s 221A Lecture Notes: Variational Method. http://hitoshi.berkeley.edu/221a/index.html (2006)
Petrov, A.A.: Variational statement of the problem of liquid motion in a container of finite dimensions. Prikl. Math. Mekh. 28(4), 917–922 (1964)
MATH
Google Scholar
Radder, A.C.: Hamiltonian dynamics of water waves. Adv. Coast. Ocean Eng. 4, 21–59 (1999)
CrossRef
Google Scholar
Rajchenbach, J., Leroux, A., Clamond, D.: New standing solitary waves in water. Phys. Rev. Lett. 107(2), 024502 (2011)
CrossRef
ADS
Google Scholar
Rajchenbach, J., Clamond, D., Leroux, A.: Observation of Star-Shaped Surface Gravity Waves. Phys. Rev. Lett. 110(9), 094502 (2013)
CrossRef
ADS
Google Scholar
Salmon, R.: Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225–256 (1988)
CrossRef
ADS
Google Scholar
Serre, F.: Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille blanche 8, 374–388 (1953)
CrossRef
Google Scholar
Serre, F.: Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille blanche 8, 830–872 (1953)
CrossRef
Google Scholar
Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. Interscience, New York (1957)
MATH
Google Scholar
Stoker, J.J.: Water waves, the Mathematical Theory with Applications. Wiley, New York (1958)
Google Scholar
Su, C.H., Gardner, C.S.: KdV equation and generalizations. Part III. Derivation of Korteweg-de Vries equation and Burgers equation. J. Math. Phys. 10, 536–539 (1969)
MathSciNet
MATH
Google Scholar
Su, C.H., Mirie, R.M.: On head-on collisions between two solitary waves. J. Fluid Mech. 98, 509–525 (1980)
MathSciNet
CrossRef
ADS
MATH
Google Scholar
Wehausen, J.V., Laitone, E.V.: Surface waves. Handbuch der Physik 9, 446–778 (1960)
MathSciNet
CrossRef
ADS
Google Scholar
Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1999)
CrossRef
MATH
Google Scholar
Wu, T.Y.: A unified theory for modeling water waves. Adv. Appl. Mech. 37, 1–88 (2001)
CrossRef
Google Scholar
Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)
CrossRef
ADS
Google Scholar
Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Usp. Fiz. Nauk 167, 1137–1168 (1997)
CrossRef
Google Scholar