Advertisement

Hamiltonian Framework for Short Optical Pulses

  • Shalva AmiranashviliEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 908)

Abstract

Physics of short optical pulses is an important and active research area in nonlinear optics. In this Chapter we theoretically consider the most extreme representatives of short pulses that contain only several oscillations of electromagnetic field. Description of such pulses is traditionally based on envelope equations and slowly varying envelope approximation, despite the fact that the envelope is not “slow” and, moreover, there is no clear definition of such a “fast” envelope. This happens due to another paradoxical feature: the standard (envelope) generalized nonlinear Schrödinger equation yields very good correspondence to numerical solutions of full Maxwell equations even for few-cycle pulses, the thing that should not be.In what follows we address ultrashort optical pulses using Hamiltonian framework for nonlinear waves. As it appears, the standard optical envelope equation is just a reformulation of general Hamiltonian equations. In a sense, no approximations are required, this is why the generalized nonlinear Schrödinger equation is so effective. Moreover, the Hamiltonian framework contributes greatly to our understanding of “fast” envelopes, ultrashort solitons, stability and radiation of optical pulses. Even the inclusion of dissipative terms is possible making the Hamiltonian approach an universal theoretical tool also in extreme nonlinear optics.

Keywords

Poisson Bracket Canonical Variable Optical Pulse Ultrashort Pulse Rogue Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic, New York (2007)Google Scholar
  2. 2.
    Agrawal, G.P., Baldeck, P.L., Alfano, R.R.: Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers. Opt. Lett. 14(2), 137–139 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)Google Scholar
  4. 4.
    Akimoto, K.: Properties and applications of ultra-short electromagnetic mono- and sub-cycle waves. J. Phys. Soc. Jpn. 65(7), 2020–2032 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Amiranashvili, S., Demircan, A.: Hamiltonian structure of propagation equations for ultrashort optical pulses. Phys. Rev. A 82(1), 013812 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Amiranashvili, S., Vladimirov, A.G., Bandelow, U.: Solitary-wave solutions for few-cycle optical pulses. Phys. Rev. A 77(6), 063821 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (1989)CrossRefGoogle Scholar
  8. 8.
    Belenov, E.M., Nazarkin, A.V.: Solutions of nonlinear-optics equations found outside the approximation of slowly varying amplitudes and phases. J. Exp. Theor. Phys. Lett. 51(5), 288–292 (1990)Google Scholar
  9. 9.
    Belgiorno, F., Cacciatori, S.L., Clerici, M., Gorini, V., Ortenzi, G., Rizzi, L., Rubino, E., Sala, V.G., Faccio, D.: Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105(20), 203901 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Bespalov, V.G., Kozlov, S.A., Shpolyanskiy, Y.A., Walmsley, I.A.: Simplified field wave equations for the nonlinear propagation of extremely short light pulses. Phys. Rev. A 66(1), 013811 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Biancalana, F.: Viewpoint: Negative frequencies get real. Physics 5(68) (2012). http://physics.aps.org/articles/v5/68
  12. 12.
    Blow, K.J., Wood, D.: Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. 25(15), 2665–2673 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Bogoliubov, N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations, 1st edn. Gordon and Breach, New York (1961)Google Scholar
  14. 14.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  15. 15.
    Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic, New York (2008)Google Scholar
  16. 16.
    Brabec, T., Krausz, F.: Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78(17), 3282–3285 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Brabec, T., Krausz, F.: Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72(2), 545–591 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Demircan, A., Amiranashvili, S., Brée, C., Morgner, U., Steinmeyer, G.: Adjustable pulse compression scheme for generation of few-cycle pulses in the midinfrared. Opt. Lett. 39(9), 2735–2738 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Diels, J.C., Rudolph, W.: Ultrashort Laser Pulse Phenomena, 2nd edn. Elsevier, Amsterdam (2006)Google Scholar
  20. 20.
    Drescher, M., Hentschel, M., Kienberger, R., Tempea, G., Spielmann, C., Reider, G.A., Corkum, P.B., Krausz, F.: X-ray pulses approaching the attosecond frontier. Science 291(5510), 1923–1927 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry - Methods and Applications. Part I: The Geometry of Surfaces, Transformation Groups, and Fields, 2nd edn. Springer, Berlin (1992)Google Scholar
  22. 22.
    Dudley, J.M., Gu, X., Xu, L., Kimmel, M., Zeek, E., O’Shea, P., Trebino, R., Coen, S., Windeler, R.S.: Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments. Opt. Express 10(21), 1215–1221 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Faccio, D.: Laser pulse analogues for gravity and analogue hawking radiation. Contemp. Phys. 53(2), 97–112 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Faddeev, L.D.: New life of complete integrability. Usp. Fiz. Nauk 56(5), 465–472 (2013)CrossRefGoogle Scholar
  26. 26.
    Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (2007)zbMATHGoogle Scholar
  27. 27.
    Ferrando, A., Zacarés, M., Fernández de Córdoba, P., Binosi, D., Montero, Á.: Forward-backward equations for nonlinear propagation in axially invariant optical systems. Phys. Rev. E 71(1), 016601 (2005)Google Scholar
  28. 28.
    Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93(3), 429–457 (1946)Google Scholar
  29. 29.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)ADSCrossRefGoogle Scholar
  30. 30.
    Geissler, M., Tempea, G., Scrinzi, A., Schnürer, M., Krausz, F., Brabec, T.: Light propagation in field-ionizing media: extreme nonlinear optics. Phys. Rev. Lett. 83(15), 2930–2933 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Genty, G., Kinsler, P., Kibler, B., Dudley, J.M.: Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides. Opt. Express 15(9), 5382–5387 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Goorjian, P.M., Taflove, A.: Direct time integration of Maxwell’s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons. Opt. Lett. 17(3), 180–182 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    Hentschel, M., Kienberger, R., Spielmann, C., Reider, G.A., Milosevic, N., Brabec, T., Corkum, P., Heinzmann, U., Drescher, M., Krausz, F.: Attosecond metrology. Nature 414(6863), 509–513 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Husakou, A.V., Herrmann, J.: Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87(20), 203901 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Hutchings, D.C., Sheik-Bahae, M., Hagan, D.J., Van Stryland, E.W.: Kramers-krönig relations in nonlinear optics. Opt. Quantum Electron. 24(1), 1–30 (1992)CrossRefGoogle Scholar
  36. 36.
    Kaplan, A.E., Shkolnikov, P.L.: Electromagnetic “Bubbles” and shock waves: unipolar, nonoscillating EM solitons. Phys. Rev. Lett. 75(12), 2316–2319 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The peregrine soliton in nonlinear fibre optics. Nat. Phys. 6(10), 790–795 (2010)CrossRefGoogle Scholar
  38. 38.
    Kim, A.V., Skobelev, S.A., Anderson, D., Hansson, T., Lisak, M.: Extreme nonlinear optics in a Kerr medium: exact soliton solutions for a few cycles. Phys. Rev. A 77(4), 043823 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Kinsler, P.: Optical pulse propagation with minimal approximations. Phys. Rev. A 81(1), 013819 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Kinsler, P., New, G.H.C.: Few-cycle pulse propagation. Phys. Rev. A 67(2), 023813 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Kolesik, M., Moloney, J.V.: Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E 70(3), 036604 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Kolesik, M., Moloney, J.V., Mlejnek, M.: Unidirectional optical pulse propagation equation. Phys. Rev. Lett. 89(28), 283902 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Kozlov, S.A., Sazonov, S.V.: Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media. J. Exp. Theor. Phys. 84(2), 221–228 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, New York (1969)Google Scholar
  45. 45.
    Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Elsevier, New York (1984)Google Scholar
  46. 46.
    Leblond, H.: Half-cycle optical soliton in quadratic nonlinear media. Phys. Rev. A 78(1), 013807 (2008)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Leblond, H., Michaelis, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523(2), 61–126 (2013)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Leblond, H., Sanchez, F.: Models for optical solitons in the two-cycle regime. Phys. Rev. A 67(1), 013804 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    Leblond, H., Sazonov, S.V., Mel’nikov, I.V., Mihalache, D., Sanchez, F.: Few-cycle nonlinear optics of multicomponent media. Phys. Rev. A 74(6), 063815 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Applied Mathematical Sciences, vol. 38. Springer, Berlin (1982)Google Scholar
  51. 51.
    Maimistov, A.I.: Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium. Quantum Electron. 30(4), 287–304 (2000)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    Mizuta, Y., Nagasawa, M., Ohtani, M., Yamashita, M.: Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect. Phys. Rev. A 72(6), 063802 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)zbMATHGoogle Scholar
  55. 55.
    Nazarkin, A., Korn, G.: Pulse self-compression in the subcarrier cycle regime. Phys. Rev. Lett. 83(23), 4748–4751 (1999)ADSCrossRefGoogle Scholar
  56. 56.
    Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528(2), 47–89 (2013)MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Paul, P.M., Toma, E.S., Breger, P., Mullot, G., Augé, F., Balcou, P., Muller, H.G., Agostini, P.: Observation of a train of attosecond pulses from high harmonic generation. Science 292(5522), 1689–1692 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    Philbin, T.G., Kuklewicz, C., Robertson, S., Hill, S., Konig, F., Leonhardt, U.: Fiber-optical analog of the event horizon. Science 319(5868), 1367–1370 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    Rubino, E., McLenaghan, J., Kehr, S.C., Belgiorno, F., Townsend, D., Rohr, S., Kuklewicz, C.E., Leonhardt, U., König, F., Faccio, D.: Negative-frequency resonant radiation. Phys. Rev. Lett. 108(25), 253901 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196(1–2), 90–105 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Semenov, V.E.: Formation of a reflected wave under propagation of a pulse with high peak intensity through a Kerr medium. J. Exp. Theor. Phys. 102(1), 34–39 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    Skobelev, S.A., Kartashov, D.V., Kim, A.V.: Few-optical-cycle solitons and pulse self-compression in a Kerr medium. Phys. Rev. Lett. 99(20), 203902 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(13), 1054–1057 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    Strocchi, F.: Complex coordinates and quantum mechanics. Rev. Mod. Phys. 38(1), 36–40 (1966)MathSciNetADSzbMATHCrossRefGoogle Scholar
  65. 65.
    Taylor, Francis.: Fundamentals of Attosecond Optics. CRC Press, Boca Raton (2011)Google Scholar
  66. 66.
    Thyagarajan, K., Ghatak, A.: Fiber Optic Essentials. Wiley, New York (2007)CrossRefGoogle Scholar
  67. 67.
    Vakman, D.E., Vainshtein, L.A.: Amplitude, phase, frequency—fundamental concepts of oscillation theory. Usp. Fiz. Nauk 20(12), 1002–1016 (1977)Google Scholar
  68. 68.
    Wirtinger, W.: Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Math. Ann. 97(1), 357–376 (1927)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Zakharov, V.E., Faddeev, L.D.: Korteweg-de Vries equation: a completely integrable Hamiltonian system. Funct. Anal. Appl. 5(4), 280–287 (1971)CrossRefGoogle Scholar
  70. 70.
    Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Usp. Fiz. Nauk 40(11), 1087–1116 (1997)CrossRefGoogle Scholar
  71. 71.
    Zakharov, V.E., Kuznetsov, E.A.: Optical solitons and quasisolitons. J. Exp. Theor. Phys. 86(5), 1035–1046 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)MathSciNetADSGoogle Scholar
  73. 73.
    Zakharov, V.E., Musher, S.L., Rubenchik, A.M.: Hamiltonian approach to the description of non-linear plasma phenomena. Phys. Rep. 129(5), 287–366 (1985)MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence 1. Wave Turbulence. Springer, Berlin (1992)CrossRefGoogle Scholar
  75. 75.
    Zakharov, V., Frédéric, D., Pushkarev, A.: One-dimensional wave turbulence. Phys. Rep. 398(1), 1–65 (2004)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany

Personalised recommendations