Advertisement

Introduction

  • Elena TobischEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 908)

Abstract

In the first chapter, we throw a brief glance at the topics presented in the following chapters and their place in the context of the general theory of nonlinear wave systems with dispersion. Starting with the concept of the wave resonance, we proceed through the formalism and presently known results in the theory of discrete and kinetic wave turbulence to the list of open questions and possible theoretical generalizations. At the end of the introductory chapter, we outline a few challenging problems in the area of matching theory and experiment, generally overlooked.

Keywords

Water Wave Modulation Instability Homotopy Analysis Method Dispersion Function Kinetic Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Annenkov, S.Y., Shrira, V.I.: Role of non-resonant interactions in the evolution of nonlinear random water wave fields. Fluid Mech. 561, 181–207 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar
  2. 2.
    Annenkov, S., Shrira, V.: Modelling the impact of squall on wind waves with the generalized kinetic equation. J. Phys. Ocean. 45(3), 807–812 (2015)CrossRefADSGoogle Scholar
  3. 3.
    Benjamin, T.B., Feir, J.E.: The disintegration of wavetrains in deep water, Part 1. Fluid Mech. 27, 417–31 (1967)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    Bridges, T.J.: A universal form for the emergence of the Korteweg – de Vries equation. Proc. R. Soc. Lond. A 469(2153), 20120707 (2013)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Bridges, T.J., Mielke, A.: A proof of the Benjamin-Feir instability. Arch. Ration. Mech Anal. 133, 145–98 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Craik, A.D.: Wave Interactions and Fluid Flows. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  7. 7.
    Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993)MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. 8.
    Gardner, C., Greene, J., Kruskal, M., Miura, R.: Method for Solving the Korteweg – de Vries Equation. Phys. Rev. Lett 19(19), 1095–1097 (1967)CrossRefADSGoogle Scholar
  9. 9.
    Grimshaw, R., Pelinovsky D., Pelinovsky E., Talipova T.: Wave group dynamics in weakly nonlinear long-wave models. Phys. D 159(1–2), 35–57 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum, Part 1. General theory. Fluid Mech. 12(04), 481–500 (1962)MathSciNetCrossRefADSzbMATHGoogle Scholar
  11. 11.
    Hetmaniok, E., Nowak, I., Slota, D., Witula, R., Zielonka, A.: Solution of the inverse heat conduction problem with Neumann boundary condition by using the homotopy perturbation method. Therm. Sci. 17(3), 643–650 (2013)CrossRefGoogle Scholar
  12. 12.
    Izadian, J., Salahshour, S., Soheil Salahshour, S.: A numerical method for solving Volterra and Fredholm integral equations using homotopy analysis method. AWER Proc. Inf. Technol. Comput. Sci. 1 406–411 (2012)Google Scholar
  13. 13.
    Kartashova, E.: Model of laminated wave turbulence. JETP Lett. 83(7), 283–287 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Kartashova, E.A.: Partitioning of ensembles of weakly interacting dispersing waves in resonators into disjoint classes. Phys. D 46(1), 43–56 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kartashova, E.A.: On properties of weakly nonlinear wave interactions in resonators. Phys. D 54, 125–34 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kartashova, E.A.: Weakly nonlinear theory of finite-size effects in resonators. Phys. Rev. Lett. 72, 2013–2016 (1994)CrossRefADSGoogle Scholar
  17. 17.
    Kartashova, E.: Exact and quasi-resonances in discrete water-wave turbulence. Phys. Rev. Lett. 98, 214502-1–214502-4 (2007)Google Scholar
  18. 18.
    Kartashova, E.A.: Discrete wave turbulence. Europhys. Lett. 87, 44001-1–44001-5 (2009)Google Scholar
  19. 19.
    Kartashova, E.: Nonlinear Resonance Analysis. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  20. 20.
    Kartashova, E.: Energy transport in weakly nonlinear wave systems with narrow frequency band excitation. Phys. Rev. E 86, 041129 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Kartashova, E.: Time scales and structures of wave interaction exemplified with water waves. Europhys. Lett. 102(4), 44005 (2013)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Kartashova, E., L’vov, V.S.: A model of intra-seasonal oscillations in the Earth atmosphere. Phys. Rev. Lett. 98, 198501-1–198501-4 (2007)Google Scholar
  23. 23.
    Kartashova, E.A., Piterbarg, L.I., Reznik, G.M.: Weakly nonlinear interactions between Rossby waves on a sphere. Oceanology 29, 405–411 (1990)Google Scholar
  24. 24.
    Kashuri, A., Fundo, A., Kreku, M.: Mixture of a new integral transform and homotopy perturbation method for solving nonlinear partial differential equations. Adv. Pure Math. 3 317–323 (2013)CrossRefGoogle Scholar
  25. 25.
    Kharif, C., Pelinovsky E., Slunyaev, A.: Rogue Waves in the Ocean. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin (2009)zbMATHGoogle Scholar
  26. 26.
    Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence, p. 336. Cambridge University Press, Cambridge (2012)Google Scholar
  27. 27.
    Levi-Civita, T.: Détermination rigoureuse des ondes permanents d’ampleur fini. Math. Ann. 93, 264 (1925)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lighthill M.J. (ed.): A Discussion on Nonlinear Theory of Wave Propagation in Dispersive Systems. Royal Society, London (1967)Google Scholar
  29. 29.
    Lvov, V.S., Pomyalov, A., Procaccia, I., Rudenko, O.: Finite-dimensional turbulence of planetary waves. Phys. Rev. E 80(6), 066319 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Luke, J.C.: A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 375–397 (1967)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Mahmood, B., Manaa, S.A., Easif, F.H.: Homotopy analysis method for solving nonlinear diffusion equation with convection term. Int. J. Appl. Math. Res. 3(3), 244–250 (2014)CrossRefGoogle Scholar
  32. 32.
    Mastroberardino, A.: Homotopy analysis method applied to electrohydrodynamic flow. Commun. Nonlinear Sci. Numer. Simul. 16(7), 2730–2736 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  33. 33.
    Matinfar, M., Saeidy, M., Gharahsuflu, B.: Homotopy analysis method for systems of integro-differential equations. J. Intel. Fuzzy Syst. Appl. Eng. Technol. 26(3), 1095–1102 (2014)MathSciNetGoogle Scholar
  34. 34.
    Nazarenko, S.: Wave Turbulence. Lecture Notes in Phyics, vol. 825. Springer, Berlin (2011)Google Scholar
  35. 35.
    Newell, A.C., Rumpf, B.: Wave Turbulence. Ann. Rev. Fluid Mech. 43(1), 59–78 (2011)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Osborne, A.: Nonlinear Ocean Waves and the Inverse Scattering Transform. International Geophysics Series, vol. 97. Elsevier Academic, Amsterdam (2010)Google Scholar
  37. 37.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)CrossRefzbMATHGoogle Scholar
  38. 38.
    Phillips, O.M.: On the dynamics of unsteady gravity waves of finite amplitude, Part 1. The elementary interactions. Fluid Mech. 9, 193–217 (1960)CrossRefzbMATHGoogle Scholar
  39. 39.
    Pushkarev, A.N.: On the Kolmogorov and frozen turbulence in numerical simulation of capillary waves. Eur. J. Mech. B/Fluids 18(3), 345–351 (1999)CrossRefADSzbMATHGoogle Scholar
  40. 40.
    Pushkarev, A.N., Zakharov, V.E.: Turbulence of capillary waves - theory and numerical simulation. Phys. D 135(1–2), 98–116 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ruderman M., Talipova T., Pelinovsky E.: Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions. Plasma Phys. 74(5), 639–656 (2008)ADSGoogle Scholar
  42. 42.
    Riemann, B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwindungsweite. Göttingen Abhandlungen VIII, 43 (1858)Google Scholar
  43. 43.
    Sajid, M.: Some Flow Problems in Differential Type Fluids: Series Solutions Using Homotopy Analysis Method (HAM). VDM (Verlag Dr. Müller, Germany) (2009)Google Scholar
  44. 44.
    Scott, A.: Encyclopedia of Nonlinear Science. Routledge, New-York (2004)Google Scholar
  45. 45.
    Stokes, G.G.: On the theories of internal friction of fluids in motion. Trans. Camb. Philos. Soc. 8, 287–305 (1845)Google Scholar
  46. 46.
    Tobisch, E.: What can go wrong when applying wave turbulence theory. E-print: arXiv:1406.3780 [physics.flu-dyn] (2014)Google Scholar
  47. 47.
    Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics, Wiley, New York (1999)Google Scholar
  48. 48.
    Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefADSzbMATHGoogle Scholar
  49. 49.
    Zakharov, V.E., Filonenko, N.N.: Weak turbulence of capillary waves. J. Appl. Mech. Tech. Phys. 8(5), 37–40 (1967)CrossRefADSGoogle Scholar
  50. 50.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190–194 (1968)CrossRefADSGoogle Scholar
  51. 51.
    Zakharov, V.E., Lvov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I. Wave Turbulence. Nonlinear Dynamics. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  52. 52.
    Zakharov, V.E., Korotkevich, A.O., Pushkarev, A.N., Dyachenko, A.I.: Mesoscopic wave turbulence. JETP Lett. 82, 487–491 (2005)CrossRefGoogle Scholar
  53. 53.
    Zakharov, V.E., Ostrovsky L.A.: Modulation instability: the beginning. Phys. D 238, 540–548 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations