The Use of Multisensory User Interfaces for Games Centered in People with Cerebral Palsy

  • Eliza Oliveira
  • Glauco Sousa
  • Icaro Magalhães
  • Tatiana TavaresEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9177)


The evolution of user interfaces has improved the user experience, especially the sensory features. Also, the sensory aspect is crucial for the interaction, mainly for the development of effective assistive technologies. This study presents a game for people with Cerebral Palsy (CP). CP refers to a range of clinical syndromes characterized by motor disorders and postural changes that may or may not be associated with cognitive impairment and speech disorders. Due to restricted motor condition, sports and games become difficult for people with CP. Our challenge is to offer an alternative to people with PC based on tangible and multisensory devices. The use of a robotic ball allowed remote manipulation, which makes this solution useful for people with physical disabilities. Also, an user centered design process was adopted. The game encourages people to interact by using different control devices, making it an important resource for promoting play in these users.


Assistive technology Multisensory devices Cerebral palsy Games User study Tangible interfaces 



Thanks the Assistive Technology Lab of occupational therapy department in UFPB. In addition we would like to thanks all the children that have been participate of the research.


  1. 1.
    Karray, F., Alemzadeh, M., Saleh, J.A., Arab, M.N.: Human-computer interaction overview on state of the art. Int. J. Smart Sens Intell. Sys. 1(1), 137–159 (2008)Google Scholar
  2. 2.
    Harper, R., Rodden, T., Rogers, T., Sellen, A.: Being Human: Human-Computer Interaction in the year 2020. Microsoft Research Ltd, England (2008)Google Scholar
  3. 3.
    Mauri, C., Granollers, T., Lorés, J., García, M.: Computer Vision Interaction for people with Severe Movement Restrictions. Hum. Technol. 2, 38–54 (2006)CrossRefGoogle Scholar
  4. 4.
    Ishii, H., Lakatos, D., Bonanni, L., e Labrune, J.: Radical atoms beyond tangible bits, toward transformable materials. Mag. Interact. 19(1), 38–51 (2012)CrossRefGoogle Scholar
  5. 5.
    Bersch, R.: Introdução à Tecnologia Assistiva. Centro Especializado em Desenvolvimento Infantil, Porto Alegre (2008)Google Scholar
  6. 6.
    Reis, N.M.M.: Introdução à Tecnologia Assistiva. In: Anais do III Seminário Internacional Sociedade Inclusiva. Belo Horizonte (2004)Google Scholar
  7. 7.
    Brummel-Smith, K., Dangiolo, M.: Assistive Technologies in the Home. Clin. Geriatr. Med. 25, 61–77 (2009)CrossRefGoogle Scholar
  8. 8.
    Leung, P., et al.: Assistive Technology: Meeting the Technology Needs of Studants with Disabilities in Post-Secondary Education. Institute of Disability Studies Deakin University, Geelong (1999)Google Scholar
  9. 9.
    Chang, Y., Chen b, S., Huang, J.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32, 2566–2570 (2011)CrossRefGoogle Scholar
  10. 10.
    Cavalcanti, A., Galvão, C.: Terapia ocupacional, fundamentação e prática, Rio de Janeiro (2007)Google Scholar
  11. 11.
    Rotta, N.T.: Paralisia cerebral, novas perspectivas terapêuticas. Jornal de Pediatria. 78, 371–374 (2002)Google Scholar
  12. 12.
    Scalha, T.B., Souza, V.G., Boffi, T., Carvalho, A.C.: A importância do brincar no desenvolvimento psicomotor: relato de experiência. Revista de Psicologia da UNESP. 9, 79–92 (2010)Google Scholar
  13. 13.
    Ferland, F.: O Modelo Lúdico: o brincar, a criança com deficiência física e a terapia ocupacional. São Paulo (2006)Google Scholar
  14. 14.
    Reid, D., Campbel, K.: The use of virtual reality with children with cerebral palsy: a pilot randomized trial. Ther. Recration J. 40, 255–268 (2006)Google Scholar
  15. 15.
    Reid, D.: The influence of virtual reality on playfulness in children with cerebral palsy: a pilot study. Occup. Ther. Int. 11, 131–144 (2004)CrossRefGoogle Scholar
  16. 16.
    Hernandez, A.H., Ye, Z., Graham, N.T.C., Fehlings, D., Switzer, L.: Designing action-based exergames for children with cerebral palsy. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1261–1270 (2013)Google Scholar
  17. 17.
    Weightman, A., Preston, N., Levesley, M., Holt, R., MonWilliams, M., Clarke, M., Cozens, A.J., Bhakta, B.: Home-bases computer-assistes upper limb exercise for yung children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome. J. Rehabil. Med. 43, 359–363 (2011)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Urbanowicz, K., Nyka, L.: Media architecture – participation through the senses. In: Proceedings of the Media Architecture Biennale, pp. 15–17, Aarhus (2012)Google Scholar
  20. 20.
    Paraguai, L.: Interfaces multisensoriais: espacialidades híbridas do corpoespaço. Revista Famecos 37, 54–60 (2008)Google Scholar
  21. 21.
    Paraguai, L.: Interfaces multisensoriais: corpo e espaço. In: XXXI Congresso Brasileiro de Ciências da Comunicação (2008)Google Scholar
  22. 22.
    Hornecker, E.: A design theme for tangible interaction: embodied facilitation. In: Conference on Computer Supported Cooperative Work, pp. 18–22, ParisGoogle Scholar
  23. 23.
    Chang, Y., Chen b, S., Huang, J.: A Kinect-based system for physical rehabilitation a pilot study for young adults with motor disabilities. Res. Dev. Disab. 32, 2566–2570 (2011)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Wii Balance Boar.
  26. 26.
    Barcelos, T.S., Carvalho, T., Schimiguel, J., Silveira, I.F.: Análise comparativa de heurísticas para avaliação de jogos digitais. In: Proceedings of the 10th Brazilian Symposium on Human Factors in Computing Systems 5th Latin American Conference on Human-Computer Interaction (2011)Google Scholar
  27. 27.
    Costa, G., Barcelos, T., Oliveira, C., Muñoz, R., Nöel, R., Silveira, I.: Construindo jogabilidade: como a percepção dos jogadores afeta o desenvolvimento de jogos em um contexto escolar. In: XII SBGames, pp. 16–18 (2013)Google Scholar
  28. 28.
    Malone, T.W.: Heuristics for designing enjoyable user interfaces: lessons from computer games. In: Proceedings of the ACM and National Bureau of Standards Conference on Human Factors in Computer Systems, Gaithersburg, pp. 15–17, March 1982Google Scholar
  29. 29.
  30. 30.
    Mouse’s as assistive technologies.
  31. 31.
  32. 32.
  33. 33.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eliza Oliveira
    • 1
  • Glauco Sousa
    • 1
  • Icaro Magalhães
    • 1
  • Tatiana Tavares
    • 1
    Email author
  1. 1.Federal University of ParaíbaJoão PessoaBrazil

Personalised recommendations