Defining Acceptable Interaction for Universal Access

  • Simeon KeatesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9175)


Many new assistive input systems developed to meet the needs of users with functional impairments fail to make it out of the research laboratory and into regular use by the intended end users. This paper examines some of the reasons for this and focuses particularly on whether the developers of such systems are using the correct metrics for evaluating the functional attributes of the input technologies they are designing. In particular, the paper focuses on the issue of benchmarking new assistive input systems against a baseline measure of useful interaction rate that takes allowance of factors such as input success/recognition rate, error rate, correction effort and input time. By addressing each of these measures, a more complete understanding of whether an input system is practically and functionally acceptable can be obtained.


Interaction rate Universal access HCI Input technologies Error rate Assistive technologies Acceptability 


  1. 1.
    Keates, S.: Motor Impaired Users and Universal Access. Universal Access Handbook, pp. 5.1–5.14. Taylor and Francis, London (2009)Google Scholar
  2. 2.
    Paradise, J., Trewin, S., Keates, S.: Using pointing devices: difficulties encountered and strategies employed. In: Proceedings of the 3rd International Conference on Universal Access in Human-Computer Interaction, Las Vegas, NV, July 2005, pp. 22–27 (2005)Google Scholar
  3. 3.
    Keates, S., Trewin, S.: Effects of age and Parkinson’s disease on cursor positioning using a mouse. In: Proceedings of 7th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2005), Baltimore, MD, October 2005, pp. 68–75 (2005)Google Scholar
  4. 4.
    Hanson, V., Brezin, J.P., Crayne, S., Keates, S., Kjeldsen, R., Richards, J.T., Swart, C., Trewin, S.: Improving web accessibility through an enhanced open-source browser. IEEE/IBM Syst. J. (Spec. Ed. Accessibility) 44(3), 573–588 (2005). IEEEGoogle Scholar
  5. 5.
    Keates, S., Potter, R., Perricos, C., Robinson, P.: Gesture recognition - research and clinical perspectives. In: Proceedings of RESNA 1997, Pittsburgh, PA, pp. 333–335 (1997)Google Scholar
  6. 6.
    Nielsen, J.: Usability Engineering. Morgan Kaufman, San Francisco (1993)zbMATHGoogle Scholar
  7. 7.
    Keates, S.: Designing for Accessibility: A Business Guide to Countering Design Exclusion. CRC Press, Boca Raton (2007)Google Scholar
  8. 8.
    Tsourakis, N.: Using hand gestures to control mobile spoken dialogue systems. Int. J. Univ. Access Inf. Soc. 13(3), 257–275 (2014). SpringerCrossRefGoogle Scholar
  9. 9.
    Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale (1983)Google Scholar
  10. 10.
    Keates, S., Clarkson, P.J.: Countering design exclusion: bridging the gap between usability and accessibility. Int. J. Univ. Access Inf. Soc. 2(3), 215–225 (2003). SpringerCrossRefGoogle Scholar
  11. 11.
    Freedom Scientific: JAWS for windows: screen reading software (2014).
  12. 12.
    Keates, S., Adams, R., Bodine, C., Czaja, S., Gordon, W., Gregor, P., Hacker, E., Hanson, V., Kemp, J., Laff, M., Lewis, C., Pieper, M., Richards, J., Rose, D., Savidis, A., Schultz, G., Snayd, P., Trewin, S., Varker, P.: Cognitive and learning difficulties and how they affect access to IT systems. Int. J. Univ. Access Inf. Soc. 5(4), 329–339 (2007). SpringerCrossRefGoogle Scholar
  13. 13.
    Keates, S., Kozloski, J., Varker, P.: Cognitive impairments, HCI and daily living. In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2009. LNCS, vol. 5614, pp. 366–374. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    El Kaliouby, R., Robinson, P., Keates, S.: Temporal context and the recognition of emotion from facial expression. In: Proceedings of HCI International 2003, Crete, Greece, pp. 631–635 (2003)Google Scholar
  15. 15.
    Keates, S., Varker, P., Spowart, F.: Human-machine design considerations in advanced machine-learning systems. IEEE/IBM J. Res. Dev. 55(5), 4:1–4:10 (2011). IEEEGoogle Scholar
  16. 16.
    Welton, T., Brown, D.J., Evett, L., Sherkat, N.: A brain-computer interface for the Dasher alternative text entry system. Int. J. Univ. Access Inf. Soc. Springer, (Springer online first) (2015)Google Scholar
  17. 17.
    Hwang, F., Keates, S., Langdon, P., Clarkson, P.J.: Movement time for motion-impaired users assisted by force-feedback: effects of movement amplitude, target width, and gravity well width. Int. J. Univ. Access Inf. Soc. 4(2), 85–95 (2005). SpringerCrossRefGoogle Scholar
  18. 18.
    Trewin, S., Keates, S., Moffatt, K.: Individual responses to the steady clicks cursor assistance technique. Disabil. Rehabil. Assist. Technol. Informa Healthcare 3(1&2), 2–21 (2008)CrossRefGoogle Scholar
  19. 19.
    Keates, S., Perricos, C.: Gesture as a means of computer access. Commun. Matters 10(1), 17–19 (1996)Google Scholar
  20. 20.
    Keates, S.: A pedagogical example of teaching universal access. Int. J. Univ. Access Inf. Soc. 14(1), 97–110 (2015). SpringerCrossRefGoogle Scholar
  21. 21.
    International Standard Organization (ISO) ISO 9241-11: Ergonomic requirements for office work with visual display terminals (VDTs), Part 11: Guidance on Usability Specification and Measures. Technical report, ISO, Geneva (1998)Google Scholar
  22. 22.
    Frokjaer, E., Hertzum, M., Hornbaek, K.: Measuring usability: are effectiveness, efficiency and satisfaction really correlated? In: Proceedings of CHI 2000, The Hague, NL, pp. 345–352 (2000)Google Scholar
  23. 23.
    Keates, S., Clarkson, P.J.: Countering Design Exclusion: An Introduction to Inclusive Design. Springer, London (2003)CrossRefGoogle Scholar
  24. 24.
    Rodrigues, E., Carreira, M., Goncalves, D.: Enhancing typing performance of older adults on tablets. Int. J. Univ. Access Inf. Soc. Springer (Springer Online First) (2014). doi: 10.1007/s10209-014-0394-8
  25. 25.
    MacKenzie, I.S., Soukeroff, R.W.: A character level error analysis technique for evaluating text entry methods. In: Proceedings of the Second Nordic Conference on Human-Computer Interaction (NordiCHI 2002), pp. 243–246. ACM (2002)Google Scholar
  26. 26.
    Soukoreff, R.W., MacKenzie, I.S.: Metrics for text entry research: an evaluation of MSD and KSPC, and a new unified error metric. In: Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 2003), Fort Lauderdale, FL, pp. 113–120 (2003)Google Scholar
  27. 27.
    Hwang, F., Keates, S., Langdon, P., Clarkson, P.J.: A submovement analysis of cursor trajectories. Behav. Inf. Technol. (BIT) 24(3), 205–217 (2005). Taylor & FrancisCrossRefGoogle Scholar
  28. 28.
    MacKenzie, I.S., Kauppinen, T., Silfverberg, M.: Accuracy measures for evaluating computer pointing devices. In: Proceedings of CHI 2001, Seattle, WA, pp. 9–15 (2001)Google Scholar
  29. 29.
    Keates, S., Hwang, F., Langdon, P., Clarkson, P.J., Robinson, P.: The use of cursor measures for motion-impaired computer users. Int. J. Univ. Access Inf. Soc. (UAIS) 2(1), 18–29 (2002). SpringerCrossRefGoogle Scholar
  30. 30.
    Keates, S., Robinson, P.: Gestures and multimodal input. Behav. Inf. Technol. 18(1), 36–44 (1999). Taylor and Francis Ltd.CrossRefGoogle Scholar
  31. 31.
    Keates, S., Langdon, P., Clarkson, P.J., Robinson, P.: User models and user physical capability. User Model. User-Adap. Inter. (UMUAI) 12(2–3), 139–169 (2002). Wolters Kluwer PublishersCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of GreenwichKentUK

Personalised recommendations