Assessing the Inclusivity of Digital Interfaces - A Proposed Method

  • Michael BradleyEmail author
  • Patrick Langdon
  • P. John Clarkson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9175)


In the assessment of the inclusivity of products with interfaces for digital devices, there are difficulty and validity issues relating the cognitive demand of using and learning an unfamiliar interface to the capabilities outlined in the population source data. This is due to the disparity between the types of cognitive tasks used to create the source data, and those needed to operate a digital interface.

Previous work to understand the factors affecting successful interactions with novel digital technology interfaces has shown that the user’s technology generation, technology prior experience and their motivation are significant. This paper suggests a method which would permit digital interfaces to be assessed for inclusivity by similarity to known interaction patterns. For a digital device interface task that contained a non-transparent or novel interaction pattern, then the resulting cognitive workload could also be assessed.


Inclusive design Exclusion audit Errors Older user Usability Prior experience 



This work was carried out in the University of Cambridge Inclusive Design Group in the Engineering Design Centre.


  1. 1.
    Clarkson, P.J., Coleman, R.: History of inclusive design in the UK. Appl. Ergonomics 46, 235–247 (2015)CrossRefGoogle Scholar
  2. 2.
    Hosking, I., Waller, S., Clarkson, P.J.: It is normal to be different: applying inclusive design in industry. Interact. Comput. 22(6), 496–501 (2010)CrossRefGoogle Scholar
  3. 3.
    Docampo Rama, M.: Technology generations handling complex interfaces. Eindhoven University of Technology, Eindhoven, The Netherlands (2001)Google Scholar
  4. 4.
    Hawthorn, D.: Designing effective interfaces for older users (2006).
  5. 5.
    Waller, S.D., Langdon, P.M., Clarkson, P.J.: Using disability data to estimate design exclusion. Univ. Access Inf. Soc. 9(3), 195–207 (2009)CrossRefGoogle Scholar
  6. 6.
    Waller, S., Williams, E., Langdon, P.: Quantifying exclusion for tasks related to product interaction. In: Langdon, P.M., Clarkson, P.J., Robinson, P. (eds.) Designing Inclusive Interactions. Springer, London (2010)Google Scholar
  7. 7.
    Department of Social Security Social Research Branch: Disability Follow-up to the 1996/97 Family Resources Survey [computer file]. UK Data Archive [distributor], Colchester, 3 Mar 2000. SN: 4090 (2000)Google Scholar
  8. 8.
    Langdon, P., Hurtienne, J.: Is prior experience the same as intuition in the context of inclusive design? In: Workshop at British HCI Conference (2009)Google Scholar
  9. 9.
    Morris, A., Goodman, J., Brading, H.: Internet use and non-use: views of older users. Univ. Access Inf. Soc. 6(1), 43–57 (2006)CrossRefGoogle Scholar
  10. 10.
    Bradley, M., Waller, S., Goodman-Deane, J., Hosking, I., Tenneti, R., Langdon, P.M., Clarkson, P.J.: A population perspective on mobile phone related tasks. In: Langdon, P., Clarkson, P.J., Robinson, P., Lazar, J., Heylighen, A. (eds.) Designing Inclusive Systems, pp. 55–64. Springer, London (2012)CrossRefGoogle Scholar
  11. 11.
    Milner, H. (ed.): Does the internet improve lives? UK Online & Freshminds (2009)Google Scholar
  12. 12.
    Bradley, M., Langdon, P., Clarkson, P.: Older user errors in handheld touchscreen devices: to what extent is prediction possible? In: Stephanidis, C. (ed.) Universal Access in HCI, Part II, HCII 2011. LNCS, vol. 6766, pp. 131–139. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Murad, S., Bradley, M., Kodagoda, N., Barnard, Y., Lloyd, A.: Using task analysis to explore older novice participants’ experiences with a handheld touchscreen device. In: Anderson, M. (ed.) Contemporary Ergonomics and Human Factors 2012, pp. 57–64. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  14. 14.
    Cooper, A., Reimann, R., Cronin, D.: About Face 3: The Essentials of Interaction Design, Revised edn. Wiley, New York (2007)zbMATHGoogle Scholar
  15. 15.
    Zajicek, M.: Successful and available: interface design exemplars for older users. Interact. Comput. 16(3), 411–430 (2004)CrossRefGoogle Scholar
  16. 16.
    Van Welie M., Trætteberg, H.: Interaction patterns in user interfaces. In: Seventh Pattern Languages of Programs Conference, pp. 13–16 (2000)Google Scholar
  17. 17.
    Apple Inc.: iPhone Human Interface Guidelines. Apple Inc. (2010)Google Scholar
  18. 18.
    Apple Inc.: iPad Human Interface Guidelines. Apple Inc. (2010)Google Scholar
  19. 19.
    Fulcher, R., Nesladek, C., Palmer, J., Robertson, C.: Android UI Design Patterns Presented at the Google 2010 Conference (2010)Google Scholar
  20. 20.
    Microsoft: UX Guide Windows Style Guide (2009)Google Scholar
  21. 21.
    Saffer, D.: Designing Gestural Interfaces: Touchscreens and Interactive Devices, 1st edn. O’Reilly Media, Sebastopol (2008)Google Scholar
  22. 22.
    Van Welie, M.: Interaction design pattern library - Interaction design pattern library: Accessed 23 Aug 2010
  23. 23.
    Budiu, R., Nielsen, J.: Usability of iPad apps and websites: first research findings. Nielsen Norman Group. Accessed 17 Aug 2010
  24. 24.
    Baskin, J.D., John, B.E.: Comparison of GOMS analysis methods. In: CHI 1998 Conference Summary on Human Factors in Computing Systems, p. 262 (1998)Google Scholar
  25. 25.
    Nielsen, J., Mack, R.L.: Usability Inspection Methods. Wiley, New York (1994)CrossRefGoogle Scholar
  26. 26.
    Baber, C., Stanton, N.A.: Task analysis for error identification: a methodology for designing error-tolerant consumer products. TERG 37(11), 1923–1941 (1994)CrossRefGoogle Scholar
  27. 27.
    Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method: a practitioner’s guide. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods. Wiley, New York (1993)Google Scholar
  28. 28.
    Rasmussen, J.: Skills, rules, and knowledge: signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. SMC-13(3), 257–266 (1983)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Waller, S., Langdon, P., Clarkson, P.: Visualizing design exclusion predicted by disability data: a mobile phone case study. In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2009. LNCS, vol. 5614, pp. 644–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael Bradley
    • 1
    Email author
  • Patrick Langdon
    • 1
  • P. John Clarkson
    • 1
  1. 1.Engineering Design Centre, Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations