Skip to main content

Human Protozoal Infections and Their Potential for Causing Neoplasms

  • Chapter
Infection and Cancer: Bi-Directorial Interactions

Abstract

Protists causing human infections generally produce local or systemic disease through direct cellular injury, and inflammatory response. Some protists have been found associated with human neoplasms, and their carcinogenic potential has received much attention in recent years. Here we outline the epidemiologic and experimental evidence linking Cryptosporidium sp., malaria and Trichomonas vaginalis to neoplastic changes in humans. Experimental studies in mammalian cells have unraveled the disruptive alterations in many of the normal signaling pathways that are critical in innate and adaptive immunity. The immune deficient states, induced by protists or other concurrent infections, most likely increase susceptibility to infection and contribute to tumorigenesis. The neoplasms that occur in malaria and trichomoniasis often contain Epstein-Barr virus (EBV) and human papilloma virus (HPV), respectively. The relative contribution of protists and different viruses, including HIV, requires delineation. The role of local microbiota in determining susceptibility to Cryptosporidium sp. or T. vaginalis infection and in carcinogenesis also requires additional investigation. The elucidation of precise mechanisms of tumorigenesis in mono- and polymicrobial infections is expected to identify targets for intervention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BL:

Burkitt’s lymphoma

COX-2:

Cyclooxygenase-2

EBV :

Epstein-Barr virus

NF-κB:

nuclear factor κB

SCID:

severe combined immunodeficiency

References

Introduction

  • Benamrouz S, Conseil V, Creusy C et al (2012) Parasites and malignancies, a review, with emphasis on digestive cancer induced by Cryptosporidium parvum (Alveolata: Apicomplexa). Parasite 19:101–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blaser MJ (2008) Understanding microbe-induced cancers. Cancer Prev Res (Phila) 1:15–20

    Article  Google Scholar 

  • IARC (2014) International agency for research on cancer. Agents classified by the IARC monographs, vol 1–110. World Health Organization, Geneva

    Google Scholar 

  • Kutikhin AG, Yuzhalin AE, Brusina EB (2013) The role of protozoa in cancer development. In: Kutikhin AG et al (eds) Infectious agents and cancer. Springer, Berlin

    Chapter  Google Scholar 

Cryptosporidium sp.

  • Abdou AG, Harba NM, Afifi AF, Elnaidany NF (2013) Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. Int J Infect Dis 17:e593–e600

    Article  CAS  PubMed  Google Scholar 

  • Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  CAS  PubMed  Google Scholar 

  • Benamrouz S, Conseil V, Chabé M et al (2014) Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model. Dis Model Mech 7:693–700

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Certad G, Ngouanesavanh T, Guyot K et al (2007) Cryptosporidium parvum, a potential cause of colic adenocarcinoma. Infect Agent Cancer 2:22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Certad G, Creusy C, Guyot K et al (2010a) Fulminant cryptosporidiosis associated with digestive adenocarcinoma in SCID mice infected with Cryptosporidium parvum TUM1 strain. Int J Parasitol 40:1469–1475

    Article  PubMed  Google Scholar 

  • Certad G, Creusy C, Ngouanesavanh T et al (2010b) Development of Cryptosporidium parvum-induced gastrointestinal neoplasia in severe combined immunodeficiency (SCID) mice: severity of lesions is correlated with infection intensity. Am J Trop Med Hyg 82:257–265

    Google Scholar 

  • Certad G, Benamrouz S, Guyot K et al (2012) Fulminant cryptosporidiosis after near-drowning: a human Cryptosporidium parvum strain implicated in invasive gastrointestinal adenocarcinoma and cholangiocarcinoma in an experimental model. Appl Environ Microbiol 78:1746–1751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chalmers RM, Davis AP (2010) Minireview: clinical cryptosporidiosis. Exp Parasitol 124:138–146

    Article  PubMed  Google Scholar 

  • Chen X-M, Levine SA, Tietz P et al (1998) Cryptosporidium parvum is cytopathic for cultured human biliary epithelia via an apoptotic mechanism. Hepatology 28:906–913

    Article  CAS  PubMed  Google Scholar 

  • Chen X-M, Gores GJ, Paya CV, LaRusso NF (1999) Cryptosporidium parvum induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism. Am J Physiol 277:G599–G608

    Google Scholar 

  • Chen X-M, Levine SA, Splinter PL et al (2001) Cryptosporidium parvum activates nuclear factor κB in biliary epithelia preventing epithelial cell apoptosis.Gastroenterology 120:1774-1783

    Google Scholar 

  • Cowman AF, Kappe SHI (2013) Malaria’s stealth shuttle. Science 313:1287–1290

    Google Scholar 

  • Current WL, Reese NC, Ernst JV et al (1983) Human cryptosporidiosis in immunocompetent and immunodeficient persons. Studies of an outbreak and experimental transmission. N Engl J Med 308:1252–1257

    Article  CAS  PubMed  Google Scholar 

  • Goebel E, Braendler U (1982) Ultrastructure of microgametogenesis, microgametes and gametogamy of Cryptosporidium sp. in the small intestine of mice. Protistologica 18:331–334

    Google Scholar 

  • Heussler VT, Küenzi P, Rottenberg S (2001) Inhibition of apoptosis by intracellular protozoan parasites. Int J Parasitol 31:1166–1176

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo J, Antúnez I, Calderón MT et al (1988) Diarrhea caused by Cryptosporidium and colonic neoplasia. Rev Clin Esp 182:393–394

    CAS  PubMed  Google Scholar 

  • Lasser KH, Lewin KJ, Ryning FW (1979) Cryptosporidial enteritis in a patient with congenital hypogammaglobulinemia. Hum Pathol 10:234–240

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Enomoto S, Lancto CA et al (2008) Inhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin. Infect Immun 76:3784–3792

    Google Scholar 

  • Liu J, Deng M, Lancto CA et al (2009) Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human intestinal epithelial cells. Infect Immun 77(2):837–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • López-Vélez R, Tarazona R, Garcia Camacho A et al (1995) Intestinal and extraintestinal cryptosporidiosis in AIDS patients. Eur J Clin Microbiol Infect Dis 14:677–681

    Article  PubMed  Google Scholar 

  • Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  PubMed  Google Scholar 

  • Meisel JL, Perera DR, Meligro C, Rubin CE (1976) Overwhelming watery diarrhea associated with Cryptosporidium in an immunosuppressed patient. Gastroenterology 70:1156–1160

    CAS  PubMed  Google Scholar 

  • Nash PB, Purner MB, Leon RP et al (1998) Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis. J Immunol 160:1824–1830

    CAS  PubMed  Google Scholar 

  • Naugler WE, Karin M (2008) NF-κB and cancer – identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Hara SP, Chen X-M (2011) The cell biology of cryptosporidium [sic] infection. Microbes Infect 13:721–730

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Hara SP, Small AJ, Gajdos GB et al (2009) HIV-1 Tat protein suppresses cholangiocyte toll-like receptor 4 expression and defense against Cryptosporidium parvum. J Infect Dis 199:1195–1204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Orenstein JM, Dieterich DT (2001) The histopathology of 103 consecutive colonoscopy biopsies from 82 symptomatic patients with acquired immunodeficiency syndrome: original and look-back diagnoses. Arch Pathol Lab Med 125:1042–1046

    CAS  PubMed  Google Scholar 

  • Patel P, Hanson DL, Sullivan PS et al (2008) Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med 148:728–736

    Article  PubMed  Google Scholar 

  • Ramirez NE, Ward LA, Sreevatsan S (2004) A review of the biology and epidemiology of cryptosporidiosis in humans and animals. Microbes Infect 6:773–785

    Article  PubMed  Google Scholar 

  • Semenza JC, Nichols G (2007) Cryptosporidiosis surveillance and water-borne outbreaks in Europe. Euro Surveill 12:E13–E14

    CAS  PubMed  Google Scholar 

  • Shebl FM, Engels EA, Goedert JJ (2012) Opportunistic intestinal infections and risk of colorectal cancer among people with AIDS. AIDS Res Hum Retroviruses 28:994–999

    Article  PubMed  CAS  Google Scholar 

  • Snelling WJ, Lin Q, Moore JE et al (2007) Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteomics 6:346–355

    Article  CAS  PubMed  Google Scholar 

  • Stephens J, Cosyns M, Jones M, Hayward A (1999) Liver and bile duct pathology following Cryptosporidium parvum infection of immunodeficient mice. Hepatology 30:27–35

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Amino R, van de Sand C et al (2013) Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313:1287–1290

    Article  CAS  Google Scholar 

  • Sulzyc-Bielicka V, Kuźna-Grygiel W, Kolodziejczyk L et al (2007) Cryptosporidiosis in patients with colorectal cancer. J Parasitol 93:722–724

    Article  CAS  PubMed  Google Scholar 

  • Sulźyc-Bielicka V, Kolodziejczyk L, Jaczewska S et al (2012) Prevalence of Cryptosporidium sp. in patients with colorectal cancer. Pol Przegl Chir 84:348–351

    PubMed  Google Scholar 

  • Takahashi M, Mutoh M, Kawamori T et al (2000) Altered expression of β-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis 21:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Valigurová A, Jirku M, Koudela B et al (2008) Cryptosporidia: epicellular parasites embraced by the host cell membrane. Int J Parasitol 38:913–922

    Article  PubMed  CAS  Google Scholar 

  • Weisburger WR, Hutcheon DF, Yardley JH et al (1979) Cryptosporidiosis in an immunosuppressed renal-transplant recipient with IgA deficiency. Am J Clin Pathol 72:473–478

    CAS  PubMed  Google Scholar 

  • Xu P, Widmer G, Wang Y et al (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    Article  CAS  PubMed  Google Scholar 

Malaria

  • Burkitt D (1958) A sarcoma involving the jaws in African children. Br J Surg 46:218–223

    Article  CAS  PubMed  Google Scholar 

  • Burkitt DP (1969) Etiology of Burkitt’s lymphoma – an alternative hypothesis to a vectored virus. J Natl Cancer Inst 42:19–28

    CAS  PubMed  Google Scholar 

  • Burkitt D, Wright D (1966) Geographical and tribal distribution of the African Lymphoma in Uganda. Br Med J 1:569–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J et al (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79:7824–7827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de The G (1979) The epidemiology of Burkitt’s lymphoma: evidence for a causal association with Epstein-Barr virus. Epidemiol Rev 1:32–54

    Google Scholar 

  • de The G (1993) The etiology of Burkitt’s lymphoma and the history of the shaken dogmas. Blood Cells 19:667–673

    PubMed  Google Scholar 

  • de The G, Geser A, Day NE et al (1978) Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature 274:756–761

    Article  Google Scholar 

  • Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  • Evans AS (1985) Epidemiology of Burkitt’s lymphoma: other risk factors. IARC Sci Publ 60:197–204

    PubMed  Google Scholar 

  • Greenwood BM (1974) Possible role of a B-cell mitogen in hypergammaglobulinaemia in malaria and trypanosomiasis. Lancet 1:435–436

    Article  CAS  PubMed  Google Scholar 

  • Henle W, Henle G (1974) The Epstein-Barr virus in Burkitt’s lymphoma and nasopharyngeal carcinoma. Ann Clin Lab Sci 4:109–114

    CAS  PubMed  Google Scholar 

  • Henle G, Henle W, Clifford P et al (1969) Antibodies to Epstein-Barr virus in Burkitt’s lymphoma and control groups. J Natl Cancer Inst 43:1147–1157

    CAS  PubMed  Google Scholar 

  • Jayasooriya S, Hislop A, Peng Y et al (2012) Revisiting the effect of acute P. falciparum malaria on Epstein-Barr virus: host balance in the setting of reduced malaria endemicity. PLoS One 7:e31142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kafuko GW (1969) Association of Burkitt’s tumour and holoendemic malaria in the West Nile district, Uganda: malaria as a possible etiologic factor. E Afr Med J 46:414–436

    CAS  Google Scholar 

  • Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8:22–33

    Article  CAS  PubMed  Google Scholar 

  • Lam KM, Syed N, Whittle H, Crawford DH (1991) Circulating Epstein-Barr virus–carrying B cells in acute malaria. Lancet 337:876–878

    Article  CAS  PubMed  Google Scholar 

  • Mannucci S, Luzzi A, Carugi A et al (2012) EBV reactivation and chromosomal polysomies: euphorbia tirucalli as a possible cofactor in endemic Burkitt lymphoma. Adv Hematol 2012:149780

    Article  PubMed Central  PubMed  Google Scholar 

  • Manolov G, Manolova Y (1972) Marker band in one chromosome 14 from Burkitt lymphomas. Nature 237:33–34

    Article  CAS  PubMed  Google Scholar 

  • Mbulaiteye SM (2013) Burkitt lymphoma: beyond discoveries. Infect Agent Cancer 8:35–38

    Article  PubMed Central  PubMed  Google Scholar 

  • Molyneux EM, Rochford R, Griffin B et al (2012) Burkitt’s lymphoma. Lancet 379:1234–1244

    Article  PubMed  Google Scholar 

  • Moormann AM, Chelimo K, Sumba OP et al (2005) Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis 191:1233–1238

    Article  PubMed  Google Scholar 

  • Mutalima N, Molyneux E, Jaffe H et al (2008) Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study. PLoS One 3:e2505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Newton R, Ziegler J, Beral V et al (2001) A case–control study of human immunodeficiency virus infection and cancer in adults and children residing in Kampala, Uganda. Int J Cancer 92:622–627

    Article  CAS  PubMed  Google Scholar 

  • Orem J, Mbidde EK, Lambert B et al (2007) Burkitt’s lymphoma in Africa, a review of the epidemiology and etiology. Afr Health Sci 7:166–175

    PubMed Central  PubMed  Google Scholar 

  • Osato T (1998) Epstein-Barr virus infection and oncogenesis. In: Epstein-Barr virus and human cancer. Gann Monograph on Cancer Research no. 45. Japanese Cancer Association, Japan Scientific Societies Press, Tokyo, Karger, Basel, Switzerland, pp 7–11

    Google Scholar 

  • Snider CJ, Cole SR, Chelimo K et al (2012) Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein Barr virus lytic but not latent antigens. PLoS One 7:e31753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torgbor C, Awuah P, Deitsch K et al (2014) A Multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog 10:e1004170

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • WHO (2013) http://www.who.int/malaria/media/world_malaria_report_2013/en/. World Health Organization, Geneva

  • Zur Hausen H, Schulte-Holthausen H, Klein G et al (1970) EBV-DNA in biopsies of Burkitt’s tumours and anaplastic carcinomas of the nasopharynx. Nature 228:1056–1058

    Article  CAS  PubMed  Google Scholar 

Trichomonas vaginalis

  • Allaj V, Guo C, Nie D (2013) Non-steroid anti-inflammatory drugs, prostaglandins, and cancer. Cell Biosci 3:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allsworth JE, Ratner JA, Peipert JF (2009) Trichomoniasis and other sexually transmitted infections: results from the 2001–2004 National Health and Nutrition Examination Surveys. Sex Transm Dis 36:738–744

    Article  PubMed Central  PubMed  Google Scholar 

  • Alsmark C, Foster PG, Sicheritz-Ponten T et al (2013) Effect of HIV-1 Vpr on cell cycle regulators. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol 14:R19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amini S, Khalili K, Sawaya BE (2004) Effect of HIV-1 Vpr on cell cycle regulators. DNA Cell Biol 23:249–260

    Article  CAS  PubMed  Google Scholar 

  • Azevedo A, Cunha V, Teixeira AL, Medeiros R (2011) IL-6/IL-6R as a potential key signaling pathway in prostate cancer development. World J Clin Oncol 2:384–396

    Article  PubMed Central  PubMed  Google Scholar 

  • Bachmann LH, Hobbs MM, Seña AC et al (2011) Trichomonas vaginalis genital infections: progress and challenges. Clin Infect Dis 53(Suppl 3):S160–S172

    Article  PubMed Central  PubMed  Google Scholar 

  • Brotman RM, Bradford LL, Conrad M et al (2012) Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex Transm Dis 39:807–812

    Article  PubMed Central  PubMed  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Cotch MF, Pastorek JG 2nd, Nugent RP et al (1997) Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis 24:353–360

    Article  CAS  PubMed  Google Scholar 

  • Cowan MJ, Coll T, Shelhamer JH (2006) Polyamine-mediated reduction in human airway epithelial migration in response to wounding is PGE2 dependent through decreases in COX-2 and cPLA2 protein levels. J Appl Physiol 101:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran SM, Barrette TR, Ghosh D et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826

    Article  CAS  PubMed  Google Scholar 

  • Dubois RN, Abramson SB, Crofford L et al (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    CAS  PubMed  Google Scholar 

  • Fichorova RN, Trifonova RT, Gilbert RO et al (2006) Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun 74:5773–5779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia AF, Benchimol M, Alderete JF (2005) Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity. Infect Immun 73:2602–2610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner WA Jr, Culberson DE, Bennett BD (1986) Trichomonas vaginalis in the prostate gland. Arch Pathol Lab Med 110:430–432

    PubMed  Google Scholar 

  • Gram IT, Macaluso M, Churchill J, Stalsberg H (1992) Trichomonas vaginalis (TV) and human papillomavirus (HPV) infection and the incidence of cervical intraepithelial neoplasia (CIN) grade III. Cancer Causes Control 3:231–236

    Article  CAS  PubMed  Google Scholar 

  • Han IH, Park SJ, Ahn MH, Ryu JS (2012) Involvement of mast cells in inflammation induced by Trichomonas vaginalis via crosstalk with vaginal epithelial cells. Parasite Immunol 34:8–14

    Article  CAS  PubMed  Google Scholar 

  • Hirt RP (2013) Trichomonas vaginalis virulence factors: an integrative overview. Sex Transm Infect 89:439–443

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirt RP, de Miguel N, Nakjang S et al (2011) Trichomonas vaginalis pathobiology: new insights from the genome sequence. Adv Parasitol 77:87–140

    Article  PubMed  Google Scholar 

  • Hobbs MM, Sena AC, Swygard H et al (2008) Trichomonas vaginalis and trichomoniasis. In: Holmes K et al (eds) Sexually transmitted diseases, 4th edn. McGraw-Hill, New York, pp 771–793

    Google Scholar 

  • Hughes JP, Baeten JM, Lingappa JR et al (2012) Determinants of per-coital-act HIV-1 infectivity among African HIV-1-serodiscordant couples. J Infect Dis 205:358–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kucknoor AS, Mundodi V, Alderete JF (2007) The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol 9:2586–2597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lazenby GB, Taylor PT, Badman BS et al (2014) An association between Trichomonas vaginalis and high-risk human papillomavirus in rural Tanzanian women undergoing cervical cancer screening. Clin Ther 36:38–45

    Article  PubMed  Google Scholar 

  • Magnuson NS, Wang Z, Ding G, Reeves R (2010) Why target PIM1 for cancer diagnosis and treatment? Future Oncol 6:1461–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller WC, Swygard H, Hobbs MM et al (2005) The prevalence of trichomoniasis in young adults in the United States. Sex Transm Dis 32:593–598

    Article  PubMed  Google Scholar 

  • Mitteregger D, Aberle SW, Makristathis A et al (2012) High detection rate of Trichomonas vaginalis in benign hyperplastic prostatic tissue. Med Microbiol Immunol 201:113–116

    Article  PubMed  Google Scholar 

  • Moodley P, Wilkinson D, Connolly C et al (2002) Trichomonas vaginalis is associated with pelvic inflammatory disease in women infected with human immunodeficiency virus. Clin Infect Dis 34:519–522

    Article  PubMed  Google Scholar 

  • Morada M, Manzur M, Lam B et al (2010) Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis. Microbiology 156:3734–3743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muzny CA, Blackburn RJ, Sinsky RJ et al (2014) Added benefit of nucleic acid amplification testing for the diagnosis of Trichomonas vaginalis among men and women attending a sexually transmitted diseases clinic. Clin Infect Dis 59:834–841

    Article  PubMed  Google Scholar 

  • Reeves R, Beckerbauer L (2001) HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim Biophys Acta 1519:13–29

    Article  CAS  PubMed  Google Scholar 

  • Roh M, Franco OE, Hayward SW et al (2008) A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells. PLoS One 3:e2572

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rughooputh S, Greenwell P (2005) Trichomonas vaginalis: paradigm of a successful sexually transmitted organism. Br J Biomed Sci 62:193–200

    CAS  PubMed  Google Scholar 

  • Ryan CM, de Miguel N, Johnson PJ (2011) Trichomonas vaginalis: current understanding of host-parasite interactions. Essays Biochem 51:161–175

    Article  CAS  PubMed  Google Scholar 

  • Ryu JS, Kang JH, Jung SY et al (2004) Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infect Immun 72:1326–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 30:1005–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satterwhite CL, Torrone E, Meites E et al (2013) Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis 40:187–193

    Article  PubMed  Google Scholar 

  • Sayed el-Ahl SA, el-Wakil HS, Kamel NM, Mahmoud MS (2002) A preliminary study on the relationship between Trichomonas vaginalis and cervical cancer in Egyptian women. J Egypt Soc Parasitol 32:167–178

    PubMed  Google Scholar 

  • Shaio MF, Lin PR, Liu JY, Tang KD (1994) Monocyte-derived interleukin-8 involved in the recruitment of neutrophils induced by Trichomonas vaginalis infection. J Infect Dis 170:1638–1640

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  • Stark JR, Judson G, Alderete JF et al (2009a) Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: physicians’ health study. J Natl Cancer Inst 101:1406–1411

    Article  PubMed Central  PubMed  Google Scholar 

  • Stark JR, Li H, Kraft P et al (2009b) Circulating prediagnostic interleukin-6 and C-reactive protein and prostate cancer incidence and mortality. Int J Cancer 124:2683–2689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutcliffe S, Giovannucci E, Alderete JF et al (2006) Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15:939–945

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe S, Neace C, Magnuson NS et al (2012) Trichomonosis, a common curable STI, and prostate carcinogenesis – a proposed molecular mechanism. PLoS Pathog 8:e1002801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tesfaye A, Di Cello F, Hillion J et al (2007) The high-mobility group A1 gene up-regulates cyclooxygenase 2 expression in uterine tumorigenesis. Cancer Res 67:3998–4004

    Article  CAS  PubMed  Google Scholar 

  • Twu O, de Miguel N, Lustig G et al (2013) Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host: parasite interactions. PLoS Pathog 9:e1003482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valdman A, Fang X, Pang ST et al (2004) Pim-1 expression in prostatic intraepithelial neoplasia and human prostate cancer. Prostate 60:367–371

    Article  CAS  PubMed  Google Scholar 

  • WHO (2011) Prevalence and incidence of selected sexually transmitted infections: Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis, and Trichomonas vaginalis. Methods and results used by the WHO to generate 2005 estimates. World Health Organization, Geneva

    Google Scholar 

  • Zhang ZF, Begg CB (1994) Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. Int J Epidemiol 23:682–690

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZF, Graham S, Yu SZ et al (1995) Trichomonas vaginalis and cervical cancer. A prospective study in China. Ann Epidemiol 5:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Z, Li X, Magnuson NS (2008) Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27:4809–4819

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Haseeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, R., Nowakowski, M., Haseeb, M.A. (2015). Human Protozoal Infections and Their Potential for Causing Neoplasms. In: Shurin, M., Thanavala, Y., Ismail, N. (eds) Infection and Cancer: Bi-Directorial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-20669-1_5

Download citation

Publish with us

Policies and ethics