Skip to main content

Bacterial Cancer Therapy: How Patients Might Benefit from Salmonella Infections

  • Chapter
  • 824 Accesses

Abstract

A growing tumor undergoes processes of heterogenisation and selection resulting in a complex system that facilitates further growth and progression. Immunosuppressive conditions belong to the hallmarks of this microenvironment, as they prevent efficient anti-cancer immunity. Eligible danger signal seems to be the missing link in the chain of events that would lead to successful elimination of cancer. The concept of bacterial cancer therapy is based on the ability of some microbial species to target tumor site and activate the cancer-specific response via pathogen-associated immunostimulatory signals. To date, a number of bacterial species have been shown to colonize tumor tissue, but strains of Salmonella are particularly interesting, since they meet all the requirements for an ideal tumor-targeting agent: a motile, facultatively anaerobic, intracellular microorganism that is prone to genetic manipulations. The most promising, S. Typhimurium, has multiple adaptations that are therapeutically relevant, including broad host specificity, specialized secretion systems and virulence factors with proapoptotic and immunomodulatory properties. Attenuation of wild-type strains has rendered them safe for preclinical and clinical use, while additional genetic modifications can add to their capacity to kill tumor cells and stimulate anti-cancer immunity. Given the recent developments in the field and the spectrum of possibilities offered by S. Typhimurium and its derivatives, it has a good chance of becoming a novel tool in the anticancer toolbox.

Dedication

In memory of Michał Bereta, who ‘infected’ us with the idea of therapeutic Salmonella

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APC:

Antigen-Presenting Cell

CEA:

CarcinoEmbryonic Antigen

DAMP:

Damage-Associated Molecular Pattern

DC:

Dendritic Cell

IDO:

Indoleamine 2,3-DiOxygenase

IFN-I:

type I InterFeroN

IFNγ:

InterFeroN gamma

IL:

InterLeukin

LPS:

LipoPolySaccharide

MDSC:

Myeloid-Derived Suppressor Cells

MHC:

Major Histocompatibility Complex

MMP:

Matrix MetalloProtease

MTD:

Maximum Tolerated Dose

PAMP:

Pathogen-Associated Molecular Pattern

scFv:

single chain variable fragment antibody

SCV:

Salmonella-Containing Vacuole

shRNA:

short hairpin RNA

SPI:

Salmonella Pathogenicity Island

STAT3:

Signal Transducer and Activator of Transcription 3

TTSS:

Type III Secretion System

TAA:

Tumor-Associated Antigen

TAM:

Tumor-Associated Macrophage

TLR:

Toll-Like Receptor

TNF:

Tumor Necrosis Factor

TRAIL:

TNF-Related Apoptosis-Inducing Ligand

Treg:

regulatory T cell

VEGF:

Vascular Endothelial Growth Factor

References

  • al-Ramadi BK, Fernandez-Cabezudo MJ, El-Hasasna H, Al-Salam S, Bashir G, Chouaib S (2009) Potent anti-tumor activity of systemically-administered IL2-expressing Salmonella correlates with decreased angiogenesis and enhanced tumor apoptosis. Clin Immunol 130(1):89–97. doi:10.1016/j.clim.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  • Anderson DG, Kowalczykowski SC (1998) Reconstitution of an SOS response pathway: derepression of transcription in response to DNA breaks. Cell 95(7):975–979

    Article  CAS  PubMed  Google Scholar 

  • Angelakopoulos H, Hohmann EL (2000) Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect Immun 68(4):2135–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avogadri F, Martinoli C, Petrovska L, Chiodoni C, Transidico P, Bronte V, Longhi R, Colombo MP, Dougan G, Rescigno M (2005) Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res 65(9):3920–3927. doi:10.1158/0008-5472.CAN-04-3002

    Article  CAS  PubMed  Google Scholar 

  • Baker S, Dougan G (2007) The genome of Salmonella enterica serovar Typhi. Clin Infect Dis 45(Suppl 1):S29–S33. doi:10.1086/518143

    Article  CAS  PubMed  Google Scholar 

  • Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22(1):33–40. doi:10.1016/j.semcancer.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  • Baumler AJ, Tsolis RM, Ficht TA, Adams LG (1998) Evolution of host adaptation in Salmonella enterica. Infect Immun 66(10):4579–4587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bereta M, Hayhurst A, Gajda M, Chorobik P, Targosz M, Marcinkiewicz J, Kaufman HL (2007) Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine 25(21):4183–4192. doi:10.1016/j.vaccine.2007.03.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biragyn A, Longo DL (2012) Neoplastic “Black Ops”: cancer’s subversive tactics in overcoming host defenses. Semin Cancer Biol 22(1):50–59. doi:10.1016/j.semcancer.2012.01.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281(16):11374–11383. doi:10.1074/jbc.M509157200

    Article  CAS  PubMed  Google Scholar 

  • Blache CA, Manuel ER, Kaltcheva TI, Wong AN, Ellenhorn JD, Blazar BR, Diamond DJ (2012) Systemic delivery of Salmonella typhimurium transformed with IDO shRNA enhances intratumoral vector colonization and suppresses tumor growth. Cancer Res 72(24):6447–6456. doi:10.1158/0008-5472.CAN-12-0193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao HD, Yang YX, Lu L, Liu SN, Wang PL, Tao XH, Wang LJ, Xiang TX (2010) Attenuated Salmonella typhimurium carrying TRAIL and VP3 genes inhibits the growth of gastric cancer cells in vitro and in vivo. Tumori 96(2):296–303

    CAS  PubMed  Google Scholar 

  • Chandra D, Gravekamp C (2013) Myeloid-derived suppressor cells: cellular missiles to target tumors. Oncoimmunology 2(11):e26967. doi:10.4161/onci.26967

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen J, Yang B, Cheng X, Qiao Y, Tang B, Chen G, Wei J, Liu X, Cheng W, Du P, Huang X, Jiang W, Hu Q, Hu Y, Li J, Hua ZC (2012) Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Sci 103(2):325–333. doi:10.1111/j.1349-7006.2011.02147.x

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Collins CC, Gout PW, Wang Y (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230(4):350–355. doi:10.1002/path.4218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chorobik P, Czaplicki D, Ossysek K, Bereta J (2013) Salmonella and cancer: from pathogens to therapeutics. Acta Biochim Pol 60(3):285–297

    CAS  PubMed  Google Scholar 

  • Chou CK, Hung JY, Liu JC, Chen CT, Hung MC (2006) An attenuated Salmonella oral DNA vaccine prevents the growth of hepatocellular carcinoma and colon cancer that express alpha-fetoprotein. Cancer Gene Ther 13(8):746–752. doi:10.1038/sj.cgt.7700927

    Article  CAS  PubMed  Google Scholar 

  • Chow MT, Moller A, Smyth MJ (2012) Inflammation and immune surveillance in cancer. Semin Cancer Biol 22(1):23–32. doi:10.1016/j.semcancer.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  • Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, Bermudes D, Brecher SM, Margitich D, Turnier J, Li Z, Luo X, King I, Zheng LM (2000) Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 181(6):1996–2002. doi:10.1086/315497

    Article  CAS  PubMed  Google Scholar 

  • Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

    Article  CAS  PubMed  Google Scholar 

  • Cronin M, Morrissey D, Rajendran S, El Mashad SM, van Sinderen D, O’Sullivan GC, Tangney M (2010) Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18(7):1397–1407. doi:10.1038/mt.2010.59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crull K, Bumann D, Weiss S (2011) Influence of infection route and virulence factors on colonization of solid tumors by Salmonella enterica serovar Typhimurium. FEMS Immunol Med Microbiol 62(1):75–83. doi:10.1111/j.1574-695X.2011.00790.x

    Article  CAS  PubMed  Google Scholar 

  • Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98(26):15155–15160. doi:10.1073/pnas.251543698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16(1):33–45. doi:10.1101/gad.949602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deretic V (2011) Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 240(1):92–104. doi:10.1111/j.1600-065X.2010.00995.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desai PT, Porwollik S, Long F, Cheng P, Wollam A, Clifton S, Weinstock GM, McClelland M (2013) Evolutionary genomics of the Salmonella enterica subspecies. mBio 4(2):e00579–12. doi:10.1128/mBio.00579-12

  • Dresch C, Leverrier Y, Marvel J, Shortman K (2012) Development of antigen cross-presentation capacity in dendritic cells. Trends Immunol 33(8):381–388. doi:10.1016/j.it.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. doi:10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  • Espert L, Codogno P, Biard-Piechaczyk M (2007) Involvement of autophagy in viral infections: antiviral function and subversion by viruses. J Mol Med (Berl) 85(8):811–823. doi:10.1007/s00109-007-0173-6

    Article  CAS  Google Scholar 

  • Ewaschuk JB, Backer JL, Churchill TA, Obermeier F, Krause DO, Madsen KL (2007) Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect Immun 75(5):2572–2579. doi:10.1128/IAI.01662-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fest S, Huebener N, Bleeke M, Durmus T, Stermann A, Woehler A, Baykan B, Zenclussen AC, Michalsky E, Jaeger IS, Preissner R, Hohn O, Weixler S, Gaedicke G, Lode HN (2009) Survivin minigene DNA vaccination is effective against neuroblastoma. Int J Cancer 125(1):104–114. doi:10.1002/ijc.24291

    Article  CAS  PubMed  Google Scholar 

  • Forbes NS (2010) Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer 10(11):785–794. doi:10.1038/nrc2934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forbes JR, Gros P (2003) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102(5):1884–1892. doi:10.1182/blood-2003-02-0425

    Article  CAS  PubMed  Google Scholar 

  • Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. doi:10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Chu L, Han X, Liu X, Ren D (2008) Synergistic antitumoral effects of human telomerase reverse transcriptase-mediated dual-apoptosis-related gene vector delivered by orally attenuated Salmonella enterica Serovar Typhimurium in murine tumor models. J Gene Med 10(6):690–701. doi:10.1002/jgm.1191

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425. doi:10.1158/0008-5472.CAN-06-3037; author reply 426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S (2013) Tumor associated macrophages and neutrophils in cancer. Immunobiology 218(11):1402–1410. doi:10.1016/j.imbio.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  • Galen JE, Curtiss R 3rd (2013) The delicate balance in genetically engineering live vaccines. Vaccine 32(35):4376-4385. doi:10.1016/j.vaccine.2013.12.026

  • Ganai S, Arenas RB, Forbes NS (2009) Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer 101(10):1683–1691. doi:10.1038/sj.bjc.6605403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-del Portillo F, Zwick MB, Leung KY, Finlay BB (1993) Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci U S A 90(22):10544–10548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D’Incalci M, Allavena P (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23(2):249–262. doi:10.1016/j.ccr.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  • Goldszmid RS, Dzutsev A, Trinchieri G (2014) Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 15(3):295–305. doi:10.1016/j.chom.2014.02.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon MA (2008) Salmonella infections in immunocompromised adults. J Infect 56(6):413–422. doi:10.1016/j.jinf.2008.03.012

    Article  PubMed  Google Scholar 

  • Guan GF, Zhao M, Liu LM, Jin CS, Sun K, Zhang DJ, Yu DJ, Cao HW, Lu YQ, Wen LJ (2013) Salmonella typhimurium mediated delivery of Apoptin in human laryngeal cancer. Int J Med Sci 10(12):1639–1648. doi:10.7150/ijms.6960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ha XQ, Yin Q, Zhao HB, Hui L, Wang ML, Peng JH, Dong JZ, Deng ZY, Zhao Y, Zhang YY (2012) Inhibitory effects of the attenuated Salmonella typhimurium containing the IL-2 gene on hepatic tumors in mice. J Biomed Biotechnol 2012:946139. doi:10.1155/2012/946139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Hoffman RM (2009a) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106(6):992–998. doi:10.1002/jcb.22078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Kishimoto H, Bouvet M, Hoffman RM (2009b) Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 8(6):870–875

    Article  CAS  PubMed  Google Scholar 

  • Heimann DM, Rosenberg SA (2003) Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J Immunother 26(2):179–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Heppner F, Mose JR (1978) The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir (Wien) 42(1–2):123–125

    Article  CAS  Google Scholar 

  • Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163(5):1123–1131. doi:10.1083/jcb.200309161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB, Uehara F, Miwa S, Yano S, Momiyama M, Suetsugu A, Chishima T, Tanaka K, Bouvet M, Endo I, Hoffman RM (2014) Efficacy of Salmonella typhimurium A1-R Versus chemotherapy on a pancreatic cancer Patient-derived orthotopic xenograft (PDOX). J Cell Biochem 115(7):1254–1261. doi:10.1002/jcb.24769

    Article  CAS  PubMed  Google Scholar 

  • Hong EH, Chang SY, Lee BR, Pyun AR, Kim JW, Kweon MN, Ko HJ (2013) Intratumoral injection of attenuated Salmonella vaccine can induce tumor microenvironmental shift from immune suppressive to immunogenic. Vaccine 31(10):1377–1384. doi:10.1016/j.vaccine.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  • Hu ZQ, Zhao WH (2013) Type 1 interferon-associated necroptosis: a novel mechanism for Salmonella enterica Typhimurium to induce macrophage death. Cell Mol Immunol 10(1):10–12. doi:10.1038/cmi.2012.54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarosz M, Jazowiecka-Rakus J, Cichon T, Glowala-Kosinska M, Smolarczyk R, Smagur A, Malina S, Sochanik A, Szala S (2013) Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 20(3):262–273. doi:10.1038/gt.2012.28

    Article  CAS  PubMed  Google Scholar 

  • Jeong JH, Kim K, Lim D, Jeong K, Hong Y, Nguyen VH, Kim TH, Ryu S, Lim JA, Kim JI, Kim GJ, Kim SC, Min JJ, Choy HE (2014) Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS One 9(1):e80050. doi:10.1371/journal.pone.0080050

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12(8):557–569. doi:10.1038/nri3254

    Article  CAS  PubMed  Google Scholar 

  • Kaimala S, Mohamed YA, Nader N, Issac J, Elkord E, Chouaib S, Fernandez-Cabezudo MJ, Al-Ramadi BK (2014) Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity. Cancer Immunol Immunother 63(6):587–599. doi:10.1007/s00262-014-1543-x

    Article  CAS  PubMed  Google Scholar 

  • Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28. doi:10.4049/jimmunol.1101029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamoto A, Morimoto YV, Miyata T, Minamino T, Hughes KT, Kato T, Namba K (2013) Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci Rep 3:3369. doi:10.1038/srep03369

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Eckmann L, Savidge TC, Lowe DC, Witthoft T, Kagnoff MF (1998) Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest 102(10):1815–1823. doi:10.1172/JCI2466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura H, Zhang L, Zhao M, Hayashi K, Tsuchiya H, Tomita K, Bouvet M, Wessels J, Hoffman RM (2010) Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif 43(1):41–48. doi:10.1111/j.1365-2184.2009.00652.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M, Steele-Mortimer O (2010) Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107(41):17733–17738. doi:10.1073/pnas.1006098107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9(12):1004–1010. doi:10.1038/nrm2529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lahiri A, Das P, Vani J, Shaila MS, Chakravortty D (2010) TLR 9 activation in dendritic cells enhances salmonella killing and antigen presentation via involvement of the reactive oxygen species. PLoS One 5(10):e13772. doi:10.1371/journal.pone.0013772

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Le DT, Dubenksy TW Jr, Brockstedt DG (2012) Clinical development of Listeria monocytogenes-based immunotherapies. Semin Oncol 39(3):311–322. doi:10.1053/j.seminoncol.2012.02.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KC, Zheng L-M, Luo X, Clairmont C, Fischer J, Margitich D, Turnier J, Almassian B, Bermudes D, King I (2000) Comparative evaluation of the acute toxic effects in monkeys, pigs and mice of a genetically engineered salmonella strain (VNP20009) being developed as an antitumor agent. Int J Toxicol 19(1):19–25

    Article  Google Scholar 

  • Lee JS, Jung ID, Lee CM, Park JW, Chun SH, Jeong SK, Ha TK, Shin YK, Kim DJ, Park YM (2010) Outer membrane protein a of Salmonella enterica serovar Typhimurium activates dendritic cells and enhances Th1 polarization. BMC Microbiol 10:263. doi:10.1186/1471-2180-10-263

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee CH, Lin ST, Liu JJ, Chang WW, Hsieh JL, Wang WK (2014) Salmonella induce autophagy in melanoma by the downregulation of AKT/mTOR pathway. Gene Ther 21(3):309–316. doi:10.1038/gt.2013.86

    Article  CAS  PubMed  Google Scholar 

  • Leschner S, Westphal K, Dietrich N, Viegas N, Jablonska J, Lyszkiewicz M, Lienenklaus S, Falk W, Gekara N, Loessner H, Weiss S (2009) Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS One 4(8):e6692. doi:10.1371/journal.pone.0006692

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lindgren SW, Stojiljkovic I, Heffron F (1996) Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci U S A 93(9):4197–4201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loeffler M, Le’Negrate G, Krajewska M, Reed JC (2007) Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci U S A 104(31):12879–12883. doi:10.1073/pnas.0701959104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loeffler M, Le’Negrate G, Krajewska M, Reed JC (2008) IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Ther 15(12):787–794. doi:10.1038/cgt.2008.48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loeffler M, Le’Negrate G, Krajewska M, Reed JC (2009) Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol Immunother 58(5):769–775. doi:10.1007/s00262-008-0555-9

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi S, Mattei F, Sistigu A, Bracci L, Spadaro F, Sanchez M, Spada M, Belardelli F, Gabriele L, Schiavoni G (2011) Type I IFNs control antigen retention and survival of CD8alpha(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J Immunol 186(9):5142–5150. doi:10.4049/jimmunol.1004163

    Article  CAS  PubMed  Google Scholar 

  • Lu H (2014) TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front Immunol 5:83. doi:10.3389/fimmu.2014.00083

    PubMed Central  PubMed  Google Scholar 

  • Lu JV, Walsh CM (2012) Programmed necrosis and autophagy in immune function. Immunol Rev 249(1):205–217. doi:10.1111/j.1600-065X.2012.01147.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. J Cancer 4(1):36–44. doi:10.7150/jca.5046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mai CW, Kang YB, Pichika MR (2013) Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. Onco Targets Ther 6:1573–1587. doi:10.2147/OTT.S50838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki H, Ellenhorn JD, Hensel M, Metelitsa L, Diamond DJ (2011) Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res 71(12):4183–4191. doi:10.1158/0008-5472.CAN-10-4676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massa PE, Paniccia A, Monegal A, de Marco A, Rescigno M (2013) Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood 122(5):705–714. doi:10.1182/blood-2012-12-474098

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni P, Grant A, Restif O, Maskell D (2009) A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat Rev Microbiol 7(1):73–80. doi:10.1038/nrmicro2034

    Article  CAS  PubMed  Google Scholar 

  • Matzinger P (2012) The evolution of the danger theory. Interview by Lauren Constable, Commissioning Editor. Expert Rev Clin Immunol 8(4):311–317. doi:10.1586/eci.12.21

    Article  CAS  PubMed  Google Scholar 

  • McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413(6858):852–856. doi:10.1038/35101614

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin LM, Govoni GR, Gerke C, Gopinath S, Peng K, Laidlaw G, Chien YH, Jeong HW, Li Z, Brown MD, Sacks DB, Monack D (2009) The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog 5(11):e1000671. doi:10.1371/journal.ppat.1000671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meunier E, Dick MS, Dreier RF, Schurmann N, Broz DK, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, Yamamoto M, Broz P (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509(7500):366–370. doi:10.1038/nature13157

    Article  CAS  PubMed  Google Scholar 

  • Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3(1):36–46. doi:10.1038/nrmicro1068

    Article  CAS  PubMed  Google Scholar 

  • Monack DM, Bouley DM, Falkow S (2004) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199(2):231–241. doi:10.1084/jem.20031319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mota LJ, Ramsden AE, Liu M, Castle JD, Holden DW (2009) SCAMP3 is a component of the Salmonella-induced tubular network and reveals an interaction between bacterial effectors and post-Golgi trafficking. Cell Microbiol 11(8):1236–1253. doi:10.1111/j.1462-5822.2009.01329.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagakura C, Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Bouvet M, Hoffman RM (2009) Efficacy of a genetically-modified Salmonella typhimurium in an orthotopic human pancreatic cancer in nude mice. Anticancer Res 29(6):1873–1878

    PubMed  Google Scholar 

  • Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, Cavagnolo R, Cahill A, Clairmont C, Sznol M (2003) Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10(10):737–744. doi:10.1038/sj.cgt.7700634

    Article  CAS  PubMed  Google Scholar 

  • Niethammer AG, Lubenau H, Mikus G, Knebel P, Hohmann N, Leowardi C, Beckhove P, Akhisaroglu M, Ge Y, Springer M, Grenacher L, Buchler MW, Koch M, Weitz J, Haefeli WE, Schmitz-Winnenthal FH (2012) Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-Receptor 2 in patients with stage IV and locally advanced pancreatic cancer. BMC Cancer 12:361. doi:10.1186/1471-2407-12-361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishikawa H, Sato E, Briones G, Chen LM, Matsuo M, Nagata Y, Ritter G, Jager E, Nomura H, Kondo S, Tawara I, Kato T, Shiku H, Old LJ, Galan JE, Gnjatic S (2006) In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J Clin Invest 116(7):1946–1954. doi:10.1172/JCI28045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26(1–2):74–86

    Article  CAS  PubMed  Google Scholar 

  • Olsthoorn MM, Petersen BO, Duus J, Haverkamp J, Thomas-Oates JE, Bock K, Holst O (2000) The structure of the linkage between the O-specific polysaccharide and the core region of the lipopolysaccharide from Salmonella enterica serovar Typhimurium revisited. Eur J Biochem 267(7):2014–2027

    Article  CAS  PubMed  Google Scholar 

  • Paesold G, Guiney DG, Eckmann L, Kagnoff MF (2002) Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. Cell Microbiol 4(11):771–781

    Article  CAS  PubMed  Google Scholar 

  • Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951. doi:10.1200/JCO.2008.19.6147

    Article  CAS  PubMed  Google Scholar 

  • Paglia P, Medina E, Arioli I, Guzman CA, Colombo MP (1998) Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92(9):3172–3176

    CAS  PubMed  Google Scholar 

  • Radics J, Konigsmaier L, Marlovits TC (2014) Structure of a pathogenic type 3 secretion system in action. Nat Struct Mol Biol 21(1):82–87. doi:10.1038/nsmb.2722

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Morales F (2012) Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012:36. doi:10.5402/2012/787934

    Article  CAS  Google Scholar 

  • Roider E, Jellbauer S, Kohn B, Berchtold C, Partilla M, Busch DH, Russmann H, Panthel K (2011) Invasion and destruction of a murine fibrosarcoma by Salmonella-induced effector CD8 T cells as a therapeutic intervention against cancer. Cancer Immunol Immunother 60(3):371–380. doi:10.1007/s00262-010-0950-x

    Article  PubMed  Google Scholar 

  • Roland KL, Brenneman KE (2013) Salmonella as a vaccine delivery vehicle. Expert Rev Vaccines 12(9):1033–1045. doi:10.1586/14760584.2013.825454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruby T, McLaughlin L, Gopinath S, Monack D (2012) Salmonella’s long-term relationship with its host. FEMS Microbiol Rev 36(3):600–615. doi:10.1111/j.1574-6976.2012.00332.x

    Article  CAS  PubMed  Google Scholar 

  • Russmann H, Shams H, Poblete F, Fu Y, Galan JE, Donis RO (1998) Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281(5376):565–568

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Mizumura K, Choi AM (2014) The impact of autophagy on cell death modalities. Int J Cell Biol 2014:502676. doi:10.1155/2014/502676

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Salcedo SP, Noursadeghi M, Cohen J, Holden DW (2001) Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3(9):587–597

    Article  CAS  PubMed  Google Scholar 

  • Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, Minchin RF, Guminski A (2012) Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4(8):675–684. doi:10.1002/emmm.201101131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schleker S, Sun J, Raghavan B, Srnec M, Muller N, Koepfinger M, Murthy L, Zhao Z, Klein-Seetharaman J (2012) The current Salmonella-host interactome. Proteomics Clin Appl 6(1–2):117–133. doi:10.1002/prca.201100083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schraidt O, Marlovits TC (2011) Three-dimensional model of Salmonella’s needle complex at subnanometer resolution. Science 331(6021):1192–1195. doi:10.1126/science.1199358

    Article  CAS  PubMed  Google Scholar 

  • Seo YW, Woo HN, Piya S, Moon AR, Oh JW, Yun CW, Kim KK, Min JY, Jeong SY, Chung S, Song PI, Choi EK, Seol DW, Kim TH (2009) The cell death-inducing activity of the peptide containing Noxa mitochondrial-targeting domain is associated with calcium release. Cancer Res 69(21):8356–8365. doi:10.1158/0008-5472.CAN-09-0349

    Article  CAS  PubMed  Google Scholar 

  • Shafer WM, Casey SG, Spitznagel JK (1984) Lipid A and resistance of Salmonella typhimurium to antimicrobial granule proteins of human neutrophil granulocytes. Infect Immun 43(3):834–838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shahnazari S, Yen WL, Birmingham CL, Shiu J, Namolovan A, Zheng YT, Nakayama K, Klionsky DJ, Brumell JH (2010) A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy. Cell Host Microbe 8(2):137–146. doi:10.1016/j.chom.2010.07.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC, Metelitsa LS (2009) Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119(6):1524–1536. doi:10.1172/JCI37869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spel L, Boelens JJ, Nierkens S, Boes M (2013) Antitumor immune responses mediated by dendritic cells: how signals derived from dying cancer cells drive antigen cross-presentation. Oncoimmunology 2(11):e26403. doi:10.4161/onci.26403

    Article  PubMed Central  PubMed  Google Scholar 

  • St Jean AT, Zhang M, Forbes NS (2008) Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotechnol 19(5):511–517. doi:10.1016/j.copbio.2008.08.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steiner TS (2007) How flagellin and toll-like receptor 5 contribute to enteric infection. Infect Immun 75(2):545–552. doi:10.1128/IAI.01506-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA (2007) Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol 297(3):151–162. doi:10.1016/j.ijmm.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  • Sylvester RJ (2011) Bacillus Calmette-Guerin treatment of non-muscle invasive bladder cancer. Int J Urol 18(2):113–120. doi:10.1111/j.1442-2042.2010.02678.x

    Article  CAS  PubMed  Google Scholar 

  • Tangney M (2010) Gene therapy for cancer: dairy bacteria as delivery vectors. Discov Med 10(52):195–200

    PubMed  Google Scholar 

  • Thamm DH, Kurzman ID, King I, Li Z, Sznol M, Dubielzig RR, Vail DM, MacEwen EG (2005) Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clinical Cancer Res 11(13):4827–4834. doi:10.1158/1078-0432.CCR-04-2510

    Article  CAS  Google Scholar 

  • Thomas DR, Francis NR, Xu C, DeRosier DJ (2006) The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 188(20):7039–7048. doi:10.1128/JB.00552-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10(11):1215–1221. doi:10.1038/ni.1800

    Article  CAS  PubMed  Google Scholar 

  • Tome Y, Zhang Y, Momiyama M, Maehara H, Kanaya F, Tomita K, Tsuchiya H, Bouvet M, Hoffman RM, Zhao M (2013) Primer dosing of S. typhimurium A1-R potentiates tumor-targeting and efficacy in immunocompetent mice. Anticancer Res 33(1):97–102

    PubMed  Google Scholar 

  • Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, Freezer LJ, Morton KE, Seipp C, Haworth L, Mavroukakis S, White D, MacDonald S, Mao J, Sznol M, Rosenberg SA (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20(1):142–152

    Article  PubMed Central  PubMed  Google Scholar 

  • Uhl M, Kepp O, Jusforgues-Saklani H, Vicencio JM, Kroemer G, Albert ML (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991–1005. doi:10.1038/cdd.2009.8

    Article  CAS  PubMed  Google Scholar 

  • Umer B, Good D, Anne J, Duan W, Wei MQ (2012) Clostridial spores for cancer therapy: targeting solid tumour microenvironment. J Toxicol 2012:862764. doi:10.1155/2012/862764

    Article  PubMed Central  PubMed  Google Scholar 

  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L (2013) Trial watch: toll-like receptor agonists for cancer therapy. Oncoimmunology 2(8):e25238. doi:10.4161/onci.25238

    Article  PubMed Central  PubMed  Google Scholar 

  • van der Velden AW, Baumler AJ, Tsolis RM, Heffron F (1998) Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun 66(6):2803–2808

    PubMed Central  PubMed  Google Scholar 

  • Villadangos JA, Shortman K (2010) Found in translation: the human equivalent of mouse CD8+ dendritic cells. J Exp Med 207(6):1131–1134. doi:10.1084/jem.20100985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voedisch S, Koenecke C, David S, Herbrand H, Forster R, Rhen M, Pabst O (2009) Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect Immun 77(8):3170–3180. doi:10.1128/IAI.00272-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner C, Polke M, Gerlach RG, Linke D, Stierhof YD, Schwarz H, Hensel M (2011) Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica. Cell Microbiol 13(8):1286–1301. doi:10.1111/j.1462-5822.2011.01621.x

    Article  CAS  PubMed  Google Scholar 

  • Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163. doi:10.1038/5517

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243. doi:10.1016/j.cell.2011.11.030

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen J, Tang B, Zhang X, Hua ZC (2013) Systemic administration of attenuated in combination with interleukin-21 for cancer therapy. Mol Clin Oncol 1(3):461–465. doi:10.3892/mco.2013.90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weibel S, Stritzker J, Eck M, Goebel W, Szalay AA (2008) Colonization of experimental murine breast tumours by Escherichia coli K-12 significantly alters the tumour microenvironment. Cell Microbiol 10(6):1235–1248. doi:10.1111/j.1462-5822.2008.01122.x

    Article  CAS  PubMed  Google Scholar 

  • Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125(2 Suppl 2):S272–S283. doi:10.1016/j.jaci.2009.09.045

    Article  PubMed Central  PubMed  Google Scholar 

  • Wick MJ (2011) Innate immune control of Salmonella enterica serovar Typhimurium: mechanisms contributing to combating systemic Salmonella infection. J Innate Immun 3(6):543–549. doi:10.1159/000330771

    Article  CAS  PubMed  Google Scholar 

  • Wynosky-Dolfi MA, Snyder AG, Philip NH, Doonan PJ, Poffenberger MC, Avizonis D, Zwack EE, Riblett AM, Hu B, Strowig T, Flavell RA, Jones RG, Freedman BD, Brodsky IE (2014) Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome. J Exp Med 211(4):653–668. doi:10.1084/jem.20130627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia Y, Zweier JL (1997) Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci U S A 94(13):6954–6958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69(6):2506–2513. doi:10.1158/0008-5472.CAN-08-4323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K (2004) TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95(10):777–783

    Article  CAS  PubMed  Google Scholar 

  • Yoon WS, Chae YS, Hong J, Park YK (2011) Antitumor therapeutic effects of a genetically engineered Salmonella typhimurium harboring TNF-alpha in mice. Appl Microbiol Biotechnol 89(6):1807–1819. doi:10.1007/s00253-010-3006-4

    Article  CAS  PubMed  Google Scholar 

  • Yoon W, Choi JH, Kim S, Park YK (2014) Engineered Salmonella typhimurium expressing E7 fusion protein, derived from human papillomavirus, inhibits tumor growth in cervical tumor-bearing mice. Biotechnol Lett 36(2):349–356. doi:10.1007/s10529-013-1370-8

    Article  CAS  PubMed  Google Scholar 

  • Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975. doi:10.1002/eji.201040895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yrlid U, Wick MJ (2000) Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med 191(4):613–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu B, Yang M, Shi L, Yao Y, Jiang Q, Li X, Tang LH, Zheng BJ, Yuen KY, Smith DK, Song E, Huang JD (2012) Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain. Sci Rep 2:436. doi:10.1038/srep00436

    PubMed Central  PubMed  Google Scholar 

  • Yu HB, Croxen MA, Marchiando AM, Ferreira RB, Cadwell K, Foster LJ, Finlay BB (2014) Autophagy facilitates Salmonella replication in HeLa cells. mBio 5(2):e00865–e00914. doi:10.1128/mBio.00865-14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang XD, Zhang XY, Gray CP, Nguyen T, Hersey P (2001) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res 61(19):7339–7348

    CAS  PubMed  Google Scholar 

  • Zhang L, Lopez H, George NM, Liu X, Pang X, Luo X (2011) Selective involvement of BH3-only proteins and differential targets of Noxa in diverse apoptotic pathways. Cell Death Differ 18(5):864–873. doi:10.1038/cdd.2010.152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Tome Y, Suetsugu A, Zhang L, Zhang N, Hoffman RM, Zhao M (2012) Determination of the optimal route of administration of Salmonella typhimurium A1-R to target breast cancer in nude mice. Anticancer Res 32(7):2501–2508

    PubMed  Google Scholar 

  • Zhang M, Swofford CA, Forbes NS (2013a) Lipid A controls the robustness of intratumoral accumulation of attenuated Salmonella in mice. Int J Cancer 135(3):647–657. doi:10.1002/ijc.28700

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang N, Su S, Hoffman RM, Zhao M (2013b) Salmonella typhimurium A1-R tumor targeting in immunocompetent mice is enhanced by a traditional Chinese medicine herbal mixture. Anticancer Res 33(5):1837–1843

    PubMed  Google Scholar 

  • Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102(3):755–760. doi:10.1073/pnas.0408422102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66(15):7647–7652. doi:10.1158/0008-5472.CAN-06-0716

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104(24):10170–10174. doi:10.1073/pnas.0703867104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. doi:10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  • Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183(9):5909–5916. doi:10.4049/jimmunol.0900441

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zhou P, Cai J, Yang G, Liang S, Ren D (2010) Tumor antigen delivered by Salmonella III secretion protein fused with heat shock protein 70 induces protection and eradication against murine melanoma. Cancer Sci 101(12):2621–2628. doi:10.1111/j.1349-7006.2010.01722.x

    Article  CAS  PubMed  Google Scholar 

  • Zhuang SM, Shvarts A, van Ormondt H, Jochemsen AG, van der Eb AJ, Noteborn MH (1995) Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells. Cancer Res 55(3):486–489

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Grzegorz Bereta for his help with manuscript preparation, especially for the scientific illustration, as well as fruitful discussions. The authors gratefully acknowledge financial support from the Polish National Centre for Research and Development through INNOTECH grant no. 152553 and the funding from the Jagiellonian University within the SET project co-financed by the European Union. Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University in Kraków is a partner of the Leading National Research Center (KNOW) supported by the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Bereta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chorobik, P., Czaplicki, D., Ossysek, K., Bereta, J. (2015). Bacterial Cancer Therapy: How Patients Might Benefit from Salmonella Infections. In: Shurin, M., Thanavala, Y., Ismail, N. (eds) Infection and Cancer: Bi-Directorial Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-20669-1_16

Download citation

Publish with us

Policies and ethics