Skip to main content

Impact of Virtual Reality Simulator in Training of Robotic Surgery

  • Chapter
  • First Online:
Robotics in Genitourinary Surgery

Abstract

Virtual reality simulation is a cost-effective training tool for robotic surgery. With available platforms, users can develop basic, intermediate, and advanced surgical skills. Simulators provide users with objective scoring feedback to improve operating performance. Although there is no present gold standard curriculum for simulator training, we review available exercises and metrics suitable for curriculum design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bric J, Lumbard D, Frelich M, Gould J. Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc. 2016;30(6):2169–78.

    Article  PubMed  Google Scholar 

  2. Phé V, Cattarino S, Parra J, Bitker MO, Ambrogi V, Vaessen C, Rouprêt M. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery. Int J Med Robot. 2016. https://doi.org/10.1002/rcs.1740.

  3. Hung A, Jayaratna I, Teruya K, Desai M, Gill I, Goh A. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112(6):864–71.

    Article  PubMed  Google Scholar 

  4. Smith R, Truong M, Perez M. Comparative analysis of the functionality of simulators of the da Vinci surgical robot. Surg Endosc. 2015;29(4):972–83.

    Article  PubMed  Google Scholar 

  5. Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69(6):1065–80.

    Article  PubMed  Google Scholar 

  6. Hung A, Patil M, Zehnder P, Cai J, Ng C, Aron M, Gill I, Desai M. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187(2):630–7.

    Article  PubMed  Google Scholar 

  7. RobotiX Mentor | Simbionix [Internet]. Simbionix.com. 2016. Available from: http://simbionix.com/simulators/robotix-mentor/.

  8. Sun A, Aron M, Hung A. Novel training methods for robotic surgery. Indian J Urol. 2014;30(3):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gallagher AG, O’Sullivan GC. Fundamentals of surgical simulation. London: Springer Verlag; 2011.

    Google Scholar 

  10. Kenney P, Wszolek M, Gould J, Libertino J, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73(6):1288–92.

    Article  PubMed  Google Scholar 

  11. Korets R, Mues A, Graversen J, Gupta M, Benson M, Cooper K, Landman J, Badani K. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78(6):1326–30.

    Article  PubMed  Google Scholar 

  12. Lee J, Mucksavage P, Kerbl D, Huynh V, Etafy M, McDougall E. Validation study of a virtual reality robotic simulator—role as an assessment tool? J Urol. 2012;187(3):998–1002.

    Article  PubMed  Google Scholar 

  13. Liss M, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, McDougall E. Validation, correlation, and comparison of the da Vinci trainer™ and the da Vinci surgical skills simulator™ using the Mimic™ software for urologic robotic surgical education. J Endourol. 2012;26(12):1629–34.

    Article  PubMed  Google Scholar 

  14. Perrenot C, Perez M, Tran N, Jehl J, Felblinger J, Bresler L, Hubert J. The virtual reality simulator dV-Trainer® is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93.

    Article  PubMed  Google Scholar 

  15. Sethi A, Peine W, Mohammadi Y, Sundaram C. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23(3):503–8.

    Article  PubMed  Google Scholar 

  16. Hung A, Zehnder P, Patil M, Cai J, Ng C, Aron M, Gill I, Desai M. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186(3):1019–24.

    Article  PubMed  Google Scholar 

  17. Egi H, Hattori M, Tokunaga M, Suzuki T, Kawaguchi K, Sawada H, Ohdan H. Face, content and concurrent validity of the Mimic1 dV-Trainer for robot-assisted endoscopic surgery: a prospective study. Eur Surg Res. 2013;50(3–4):292–300.

    Article  CAS  PubMed  Google Scholar 

  18. Schreuder H, Persson J, Wolswijk R, Ihse I, Schijven M, Verheijen R. Validation of a novel virtual reality simulator for robotic surgery. Sci World J. 2014;2014:507076.

    Article  Google Scholar 

  19. Alzahrani T, Haddad R, Alkhayal A, Delisle J, Drudi L, Gotlieb W, Fraser S, Bergman S, Bladou F, Andonian S, Anidjar M. Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc J. 2013;7(7–8):E520–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kelly D, Margules A, Kundavaram C, Narins H, Gomella L, Trabulsi E, Lallas C. Face, content, and construct validation of the da Vinci skills simulator. Urology. 2012;79(5):1068–72.

    Article  PubMed  Google Scholar 

  21. Lyons C, Goldfarb D, Jones S, Badhiwala N, Miles B, Link R, Dunkin B. Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc. 2013;27(6):2020–30.

    Article  PubMed  Google Scholar 

  22. Ramos P, Montez J, Tripp A, Ng C, Gill I, Hung A. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014;113(5):836–42.

    Article  PubMed  Google Scholar 

  23. Whittaker G, Aydin A, Raison N, Kum F, Challacombe B, Khan M, Dasgupta P, Ahmed K. Validation of the RobotiX mentor robotic surgery simulator. J Endourol. 2016;30(3):338–46.

    Article  PubMed  Google Scholar 

  24. Seixas-Mikelus S, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding G, Guru K. Face validation of a novel robotic surgical simulator. Urology. 2010;76(2):357–60.

    Article  PubMed  Google Scholar 

  25. Hung A, Shah S, Dalag L, Shin D, Gill I. Development and validation of a novel robotic procedure-specific simulation platform: partial nephrectomy. J Urol. 2015;194(2):520–6.

    Article  PubMed  Google Scholar 

  26. Seixas-Mikelus S, Stegemann A, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, Wilding G, Peabody J, Guru K. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107(7):1130–5.

    Article  PubMed  Google Scholar 

  27. Xu S, Perez M, Perrenot C, Hubert N, Hubert J. Face, content, construct, and concurrent validity of a novel robotic surgery patient-side simulator: the Xperience™ Team Trainer. Surg Endosc. 2016;30(8):3334–44.

    Article  PubMed  Google Scholar 

  28. Lendvay T, Casale P, Sweet R, Peter C. Initial validation of a virtual-reality robotic simulator. J Robot Surg. 2008;2(3):145–9.

    Article  PubMed  Google Scholar 

  29. Kang S, Cho S, Kang S, Haidar A, Samavedi S, Palmer K, Patel V, Cheon J. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology. 2014;84(2):345–50.

    Article  PubMed  Google Scholar 

  30. van der Meijden O, Broeders I, Schijven M. The SEP “robot”: a valid virtual reality robotic simulator for the da Vinci surgical system? Surg Technol Int 2010;19:51–58.

    Google Scholar 

  31. Gavazzi A, Bahsoun A, Van Haute W, Ahmed K, Elhage O, Jaye P, Khan M, Dasgupta P. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP robot). Ann R Coll Surg Engl. 2011;93(2):152–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Finnegan K, Meraney A, Staff I, Shichman S. da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology. 2012;80(2):330–5.

    Article  PubMed  Google Scholar 

  33. Connolly M, Seligman J, Kastenmeier A, Goldblatt M, Gould J. Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc. 2014;28(5):1691–4.

    Article  PubMed  Google Scholar 

  34. Chowriappa A, Shi Y, Raza S, Ahmed K, Stegemann A, Wilding G, Kaouk J, Peabody J, Menon M, Hassett J, Kesavadas T, Guru K. Development and validation of a composite scoring system for robot-assisted surgical training—the Robotic Skills Assessment Score. J Surg Res. 2013;185(2):561–9.

    Article  PubMed  Google Scholar 

  35. Raza S, Froghi S, Chowriappa A, Ahmed K, Field E, Stegemann A, Rehman S, Sharif M, Shi Y, Wilding G, Kesavadas T, Kaouk J, Guru K. Construct validation of the key components of Fundamental Skills of Robotic Surgery (FSRS) curriculum—a multi-institution prospective study. J Surg Educ. 2014;71(3):316–24.

    Article  PubMed  Google Scholar 

  36. Balasundaram I, Aggarwal R, Darzi A. Short-phase training on a virtual reality simulator improves technical performance in tele- robotic surgery. Int J Med Robot. 2008;4(2):139–45.

    Article  PubMed  Google Scholar 

  37. Foell K, Furse A, Honey R, Pace K, Lee J. Multidisciplinary validation study of the da Vinci Skills Simulator: educational tool and assessment device. J Robot Surg. 2013;7(4):365–9.

    Article  PubMed  Google Scholar 

  38. Goh A, Goldfarb D, Sander J, Miles B, Dunkin B. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.

    Article  PubMed  Google Scholar 

  39. Mouraviev V, Klein M, Schommer E, Thiel D, Samavedi S, Kumar A, Leveillee R, Thomas R, Pow-Sang J, Su L, Mui E, Smith R, Patel V. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules. J Robot Surg. 2016;10(1):49–56.

    Article  PubMed  Google Scholar 

  40. Guzzo T, Gonzalgo M. Robotic surgical training of the urologic oncologist. Urol Oncol. 2009;27(2):214–7.

    Article  PubMed  Google Scholar 

  41. Bric J, Connolly M, Kastenmeier A, Goldblatt M, Gould J. Proficiency training on a virtual reality robotic surgical skills curriculum. Surg Endosc. 2014;28(12):3343–8.

    Article  PubMed  Google Scholar 

  42. Zhang N, Sumer B. Transoral robotic surgery: simulation-based standardized training. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1111–7.

    Article  PubMed  Google Scholar 

  43. Rajanbabu A, Drudi L, Lau S, Press J, Gotlieb W. Virtual reality surgical simulators—a prerequisite for robotic surgery. Indian J Surg Oncol. 2014;5(2):125–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vaccaro C, Crisp C, Fellner A, Jackson C, Kleeman S, Pavelka J. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial. Female Pelvic Med Reconstr Surg. 2013;19(5):266–70.

    Article  PubMed  Google Scholar 

  45. Brinkman W, Luursema J, Kengen B, Schout B, Witjes J, Bekkers R. da Vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills. Urology. 2013;81(3):562–6.

    Article  PubMed  Google Scholar 

  46. Stegemann A, Ahmed K, Syed J, Rehman S, Ghani K, Autorino R, Sharif M, Rao A, Shi Y, Wilding G, Hassett J, Chowriappa A, Kesavadas T, Peabody J, Menon M, Kaouk J, Guru K. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. 2013;81(4):767–74.

    Article  PubMed  Google Scholar 

  47. Lendvay T, Brand T, White L, Kowalewski T, Jonnadula S, Mercer L, Khorsand D, Andros J, Hannaford B, Satava R. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yokoi, H., Chen, J., Desai, M.M., Hung, A.J. (2018). Impact of Virtual Reality Simulator in Training of Robotic Surgery. In: Hemal, A., Menon, M. (eds) Robotics in Genitourinary Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-20645-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20645-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20644-8

  • Online ISBN: 978-3-319-20645-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics