Abstract
We present a case study on formalization of a textbook theorem in a form that is as close to the original textbook presentation as possible. Euler’s partition theorem, listed as #45 at Freek Wiedijk’s list of “Top 100 mathematical theorems”, is taken as the subject of the study. As a result new formal concepts including informal flexary (i.e. flexible arity) addition are created and existing ones are extended to go around existing limitations of the Mizar system, without modification of its core. Such developments bring more flexibility of informal language reasoning into the Mizar system and make it useful for wider audience.
The paper has been financed by the resources of the Polish National Science Center granted by decision n\(^{\circ }\)DEC-2012/07/N/ST6/02147.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For more details see https://code.google.com/p/hol-light/source/browse/trunk/100/euler.ml?r=2.
References
Andrews, G.E.: Number Theory, Dover edn. W. B. Saunders Company, Philadelphia (1971)
Bancerek, G.: Countable sets and Hessenberg’s theorem. Formalized Math. 2(1), 65–69 (1991)
Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 119–131. Springer, Heidelberg (2003)
Byliński, C.: Functions and their basic properties. Formalized Math. 1(1), 55–65 (1990)
Engelking, R.: General Topology. PWN - Polish Scientific Publishers, Warsaw (1977)
Euler, L.: Introduction to the Analysis of the Infinite Book I Translated by John D. Blanton. Springer, New York (1988)
Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reasoning 3(2), 153–245 (2010)
Grabowski, A., Schwarzweller, C.: On duplication in mathematical repositories. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 300–314. Springer, Heidelberg (2010)
Grabowski, A., Schwarzweller, C.: Improving representation of knowledge within the mizar library. Stud. Logic Grammar Rhetoric 18(31), 35–50 (2009)
Harrison, J.V.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)
Korniłowicz, A.: Tentative experiments with ellipsis in mizar. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 453–457. Springer, Heidelberg (2012)
Horozal, F., Rabe, F., Kohlhase, M.: Flexary operators for formalized mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 312–327. Springer, Heidelberg (2014)
Korniłowicz, A., Shidama, Y.: Brouwer fixed point theorem for disks on the plane. Formalized Math. 13(2), 333–336 (2005)
Leisenring, A.C.: Mathematical Logic and Hilbert’s \(\varepsilon \)-Symbol. Gordon and Breach, New York (1969)
Pąk, K.: Euler’s partition theorem. Formalized Math. 23(2), 91–98 (2015). doi:10.2478/forma-2015-0009
Pąk, K.: Flexary operations. Formalized Math. 23(2), 79–90 (2015). doi:10.2478/forma-2015-0008
Pąk, K.: Methods of lemma extraction in natural deduction proofs. J. Autom. Reasoning 50(2), 217–228 (2013)
Pąk, K.: Topological manifolds. Formalized Math. 22(2), 179–186 (2014)
Rudnicki, P., Trybulec, A.A.: Abian’s fixed point theorem. Formalized Math. 6(3), 335–338 (1997)
Sylvester, J.J., Franklin, F.: A constructive theory of partitions, arranged in three acts, an interact and an exodion. Amer. J. Math. 5, 251–330 (1882)
Trybulec, W.A.: Non-contiguous substrings and one-to-one finite sequences. Formalized Math. 1(3), 569–573 (1990)
Wilf, H.S.: Lectures on Integer Partitions (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Pąk, K. (2015). Readable Formalization of Euler’s Partition Theorem in Mizar. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds) Intelligent Computer Mathematics. CICM 2015. Lecture Notes in Computer Science(), vol 9150. Springer, Cham. https://doi.org/10.1007/978-3-319-20615-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-20615-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20614-1
Online ISBN: 978-3-319-20615-8
eBook Packages: Computer ScienceComputer Science (R0)