Skip to main content

Readable Formalization of Euler’s Partition Theorem in Mizar

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9150))

Included in the following conference series:

  • 1280 Accesses

Abstract

We present a case study on formalization of a textbook theorem in a form that is as close to the original textbook presentation as possible. Euler’s partition theorem, listed as #45 at Freek Wiedijk’s list of “Top 100 mathematical theorems”, is taken as the subject of the study. As a result new formal concepts including informal flexary (i.e. flexible arity) addition are created and existing ones are extended to go around existing limitations of the Mizar system, without modification of its core. Such developments bring more flexibility of informal language reasoning into the Mizar system and make it useful for wider audience.

The paper has been financed by the resources of the Polish National Science Center granted by decision n\(^{\circ }\)DEC-2012/07/N/ST6/02147.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For more details see https://code.google.com/p/hol-light/source/browse/trunk/100/euler.ml?r=2.

References

  1. Andrews, G.E.: Number Theory, Dover edn. W. B. Saunders Company, Philadelphia (1971)

    MATH  Google Scholar 

  2. Bancerek, G.: Countable sets and Hessenberg’s theorem. Formalized Math. 2(1), 65–69 (1991)

    Google Scholar 

  3. Bancerek, G., Rudnicki, P.: Information retrieval in MML. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 119–131. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Byliński, C.: Functions and their basic properties. Formalized Math. 1(1), 55–65 (1990)

    Google Scholar 

  5. Engelking, R.: General Topology. PWN - Polish Scientific Publishers, Warsaw (1977)

    MATH  Google Scholar 

  6. Euler, L.: Introduction to the Analysis of the Infinite Book I Translated by John D. Blanton. Springer, New York (1988)

    Book  MATH  Google Scholar 

  7. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reasoning 3(2), 153–245 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Grabowski, A., Schwarzweller, C.: On duplication in mathematical repositories. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 300–314. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Grabowski, A., Schwarzweller, C.: Improving representation of knowledge within the mizar library. Stud. Logic Grammar Rhetoric 18(31), 35–50 (2009)

    Google Scholar 

  10. Harrison, J.V.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Korniłowicz, A.: Tentative experiments with ellipsis in mizar. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 453–457. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Horozal, F., Rabe, F., Kohlhase, M.: Flexary operators for formalized mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 312–327. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Korniłowicz, A., Shidama, Y.: Brouwer fixed point theorem for disks on the plane. Formalized Math. 13(2), 333–336 (2005)

    Google Scholar 

  14. Leisenring, A.C.: Mathematical Logic and Hilbert’s \(\varepsilon \)-Symbol. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  15. Pąk, K.: Euler’s partition theorem. Formalized Math. 23(2), 91–98 (2015). doi:10.2478/forma-2015-0009

    Google Scholar 

  16. Pąk, K.: Flexary operations. Formalized Math. 23(2), 79–90 (2015). doi:10.2478/forma-2015-0008

    Google Scholar 

  17. Pąk, K.: Methods of lemma extraction in natural deduction proofs. J. Autom. Reasoning 50(2), 217–228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pąk, K.: Topological manifolds. Formalized Math. 22(2), 179–186 (2014)

    Google Scholar 

  19. Rudnicki, P., Trybulec, A.A.: Abian’s fixed point theorem. Formalized Math. 6(3), 335–338 (1997)

    Google Scholar 

  20. Sylvester, J.J., Franklin, F.: A constructive theory of partitions, arranged in three acts, an interact and an exodion. Amer. J. Math. 5, 251–330 (1882)

    Article  MathSciNet  MATH  Google Scholar 

  21. Trybulec, W.A.: Non-contiguous substrings and one-to-one finite sequences. Formalized Math. 1(3), 569–573 (1990)

    Google Scholar 

  22. Wilf, H.S.: Lectures on Integer Partitions (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Pąk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pąk, K. (2015). Readable Formalization of Euler’s Partition Theorem in Mizar. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds) Intelligent Computer Mathematics. CICM 2015. Lecture Notes in Computer Science(), vol 9150. Springer, Cham. https://doi.org/10.1007/978-3-319-20615-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20615-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20614-1

  • Online ISBN: 978-3-319-20615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics