What Do My Colleagues Know? Dealing with Cognitive Complexity in Organizations Through Visualizations

  • André Calero Valdez
  • Simon Bruns
  • Christoph Greven
  • Ulrik Schroeder
  • Martina Ziefle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9192)

Abstract

In order to cope with the growth of information complexity, organizations have started to implement various forms of knowledge management applications. Approaches range from file-, data-, information-centric software to information retrieval, search engines, and decision support systems. Thereby, the data presentation plays often a crucial part in making knowledge available in organizational settings. We examine two visualizations and investigate their capabilities to support organizational knowledge and their usability. One is a document-keyword centric graph-based visualization, while the other is person-institute centric. Both were evaluated positively in supporting improvement of organizational knowledge.

Keywords

Social portals Knowledge discovery Recommender systems Visualization User-study Trust 

References

  1. 1.
    Metcalfe, J.S.: Knowledge of growth and the growth of knowledge. J. Evol. Econ. 12(1–2), 3–15 (2002)CrossRefGoogle Scholar
  2. 2.
    Bellinger, G., Castro, D., Mills, A.: Data, information, knowledge, and wisdom (2004). http://www.systems-thinking.org/dikw/dikw.htm
  3. 3.
    Wang, J., De Vries, A.P., Reinders, M.J.: Unified relevance models for rating prediction in collaborative filtering. ACM Trans. Inf. Syst. (TOIS) 26(3), 16 (2008)CrossRefGoogle Scholar
  4. 4.
    Holsapple, C.W., Whinston, A.B.: Knowledge-based organizations. Inf. Soc. 5(2), 77–90 (1987)CrossRefGoogle Scholar
  5. 5.
    Calero Valdez, A., Ziefle, M., Alagöz, F., Holzinger, A.: Mental models of menu structures in diabetes assistants. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part II. LNCS, vol. 6180, pp. 584–591. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Orlikowski, W.J., Gash, D.C.: Technological frames: making sense of information technology in organizations. ACM Trans. Inf. Syst. (TOIS) 12(2), 174–207 (1994)CrossRefGoogle Scholar
  7. 7.
    Grudin, J.: Groupware and social dynamics: eight challenges for developers. Commun. ACM 37(1), 92–105 (1994)CrossRefGoogle Scholar
  8. 8.
    Olson, G.M., Olson, J.S.: Distance matters. Hum.-Comput. Interact. 15(2), 139–178 (2000)CrossRefGoogle Scholar
  9. 9.
    Sharma, S.K., Gupta, J.N., Wickramasinghe, N.: A framework for building a learning organisation in the 21st century. Int. J. Innovation Learn. 2(3), 261–273 (2005)CrossRefGoogle Scholar
  10. 10.
    Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: some issues and experiences. Commun. ACM 34(1), 39–58 (1991)CrossRefGoogle Scholar
  11. 11.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. ACM Sigmod Rec. 26(1), 65–74 (1997)CrossRefGoogle Scholar
  12. 12.
    Dumas, M., Van der Aalst, W.M., Ter Hofstede, A.H.: Process-Aware Information systems: Bridging People and Software through Process Technology. Wiley, New York (2005) CrossRefGoogle Scholar
  13. 13.
    Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile constructed without any effort from users. In: Proceedings of the 13th international conference on World Wide Web, pp. 675–684. ACM (2004)Google Scholar
  14. 14.
    Morris, M.R., Horvitz, E.: Searchtogether: an interface for collaborative web search. In: Proceedings of the 20th annual ACM symposium on User Interface Software and Technology, pp. 3–12. ACM (2007)Google Scholar
  15. 15.
    Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)CrossRefGoogle Scholar
  16. 16.
    Thudt, A., Hinrichs, U., Carpendale, S.: The bohemian bookshelf: supporting serendipitous book discoveries through information visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 1461–1470. ACM, New York (2012)Google Scholar
  17. 17.
    Miller, L.J., Gazan, R., Still, S.: Unsupervised classification and visualization of unstructured text for the support of interdisciplinary collaboration. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & #38; Social Computing. CSCW 2014, pp. 1033–1042. ACM, New York (2014)Google Scholar
  18. 18.
    Datta, A., Tan Teck Yong, J., Ventresque, A.: T-recs: team recommendation system through expertise and cohesiveness. In: Proceedings of the 20th International Conference Companion on WWW, WWW 2011, pp. 201–204. ACM, New York (2011)Google Scholar
  19. 19.
    Loepp, B., Hussein, T., Ziegler, J.: Choice-based preference elicitation for collaborative filtering recommender systems. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3085–3094. ACM (2014)Google Scholar
  20. 20.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  21. 21.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. ACM (2000)Google Scholar
  22. 22.
    Gunawardana, A., Meek, C.: A unified approach to building hybrid recommender systems. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 117–124. ACM (2009)Google Scholar
  23. 23.
    Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decis. Support Syst. 33(2), 111–126 (2002)CrossRefGoogle Scholar
  24. 24.
    Gretarsson, B., O’Donovan, J., Bostandjiev, S., Hall, C., Höllerer, T.: Smallworlds: visualizing social recommendations. In: Computer Graphics Forum, vol. 29, pp. 833–842. Wiley Online Library (2010)Google Scholar
  25. 25.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 336–343. IEEE (1996)Google Scholar
  26. 26.
    Holzinger, A.: Human-Computer Interaction and Knowledge Discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  27. 27.
    O’Donovan, J., Smyth, B., Gretarsson, B., Bostandjiev, S., Höllerer, T.: Peerchooser: visual interactive recommendation. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1085–1088. ACM (2008)Google Scholar
  28. 28.
    Montaner, M., López, B., De La Rosa, J.L.: A taxonomy of recommender agents on the internet. Artif. Intell. Rev. 19(4), 285–330 (2003)CrossRefGoogle Scholar
  29. 29.
    Calero Valdez, A., Schaar, A.K., Ziefle, M., Holzinger, A., Jeschke, S., Brecher, C.: Using mixed node publication network graphs for analyzing success in interdisciplinary teams. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 606–617. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  30. 30.
    Bruns, S., Calero Valdez, A., Greven, C., Ziefle, M., Schroeder, U.: What should i read next? a personalized visual publication recommender system. In: Proceedings of the HCI International 2015 (2015)Google Scholar
  31. 31.
    Yazdi, M.A., Calero Valdez, A., Lichtschlag, L., Ziefle, M., Borchers, J.: Visualizing opportunities of collaboration in large organizations. In: Manuscript Submitted for Publication (submitted)Google Scholar
  32. 32.
    Brooke, J.: SUS - a quick and dirty usability scale. Usability Eval. Ind. 189, 194 (1996)Google Scholar
  33. 33.
    Reichheld, F.F.: The one number you need to grow. Harvard Bus. Rev. 81(12), 46–55 (2003)Google Scholar
  34. 34.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)CrossRefGoogle Scholar
  35. 35.
    Calero Valdez, A., Schaar, A.K., Ziefle, M., Holzinger, A.: Enhancing interdisciplinary cooperation by social platforms. In: Yamamoto, S. (ed.) HCI 2014, Part I. LNCS, vol. 8521, pp. 298–309. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • André Calero Valdez
    • 1
  • Simon Bruns
    • 1
  • Christoph Greven
    • 2
  • Ulrik Schroeder
    • 2
  • Martina Ziefle
    • 1
  1. 1.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany
  2. 2.Learning Technologies Research GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations