Advertisement

Generating Fingerings for Polyphonic Piano Music with a Tabu Search Algorithm

  • Matteo BalliauwEmail author
  • Dorien Herremans
  • Daniel Palhazi Cuervo
  • Kenneth Sörensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9110)

Abstract

A piano fingering is an indication of which finger is to be used to play each note in a piano composition. Good piano fingerings enable pianists to study, remember and play pieces in an optimal way. In this paper, we propose a tabu search algorithm to find a good piano fingering automatically and in a short amount of time. An innovative feature of the proposed algorithm is that it implements an objective function that takes into account the characteristics of the pianist’s hand and that it can be used for complex polyphonic music.

Keywords

Piano fingering Tabu search Metaheuristics OR in Music Combinatorial optimisation 

Notes

Acknowledgments

This research is supported by the Interuniversity Attraction Poles (IAP) Programme initiated by the Belgian Science Policy Office (COMEX project).

References

  1. 1.
    Sloboda, J.A., Clarke, E.F., Parncutt, R., Raekallio, M.: Determinants of finger choice in piano sight-reading. J. Exp. Psychol. Hum. Percept. Perform. 24, 185–203 (1998)CrossRefGoogle Scholar
  2. 2.
    Robine, M.: Analyse automatique du doigté au piano. In: Proceedings of the Journées d’Informatique Musicale, pp. 106–112 (2009)Google Scholar
  3. 3.
    Herremans, D.: Tabu search voor de optimalisatie van muzikale fragmenten. Master’s thesis at University of Antwerp, Faculty of Applied Economics, Antwerp (2005)Google Scholar
  4. 4.
    Gellrich, M., Parncutt, R.: Piano technique and fingering in the eighteenth and nineteenth centuries: bringing a forgotten method back to life. Br. J. Music Educ. 15, 5–23 (1998)CrossRefGoogle Scholar
  5. 5.
    Sayegh, S.I.: Fingering for string instruments with the optimum path paradigm. Comput. Music J. 13, 76–84 (1989)CrossRefGoogle Scholar
  6. 6.
    Parncutt, R., Sloboda, J.A., Clarke, E.F., Raekallio, M., Desain, P.: An ergonomic model of keyboard fingering for melodic fragments. Music Percept. 14, 341–382 (1997)CrossRefGoogle Scholar
  7. 7.
    Parncutt, R.: Modeling piano performance: physics and cognition of a virtual pianist. In: Proceedings of International Computer Music Conference, pp. 15–18 (1997)Google Scholar
  8. 8.
    Viana, A.B., de Morais Júnior, A.C.: Technological improvements in the SIEDP. In: IX Brazilian Symposium on Computer Music, Campinas, Brazil (2003)Google Scholar
  9. 9.
    Hart, M., Bosch, R., Tsai, E.: Finding optimal piano fingerings. UMAP J. 2, 167–177 (2000)Google Scholar
  10. 10.
    Radicioni, D.P., Anselma, L., Lombardo, V.: An algorithm to compute fingering for string instruments. In: Proceedings of the National Congress of the Associazione Italiana di Scienze Cognitive, Ivrea, Italy (2004)Google Scholar
  11. 11.
    Al Kasimi, A., Nichols, E., Raphael, C.: A simple algorithm for automatic generation of polyphonic piano fingerings. In: 8th International Conference on Music Information Retrieval, Vienna (2007)Google Scholar
  12. 12.
    Yonebayashi, Y., Kameoka, H., Sagayama, S. Automatic decision of piano fingering based on Hidden Markov models. In: IJCAI, pp. 2915–2921 (2007)Google Scholar
  13. 13.
    Jacobs, J.P.: Refinements to the Ergonomic model for keyboard fingering of parncutt, Sloboda, Clarke, Raekalliio desain. Music Percept. 18, 505–511 (2001)CrossRefGoogle Scholar
  14. 14.
    Lin, C.-C., Liu, D.S.-M.: An intelligent virtual piano tutor. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications, pp. 353–356 (2006)Google Scholar
  15. 15.
    Balliauw, M.: A variable neighbourhood search algorithm to generate piano fingerings for polyphonic sheet music. Master’s thesis at University of Antwerp, Faculty of Applied Economics, Antwerp (2014)Google Scholar
  16. 16.
    Sébastien, V., Ralambondrainy, H., Sébastien, O., Conruyt, N.: Score analyzer: automatically determining scores difficulty level for instrumental e-learning. In: ISMIR, pp. 571–576 (2012)Google Scholar
  17. 17.
    Sörensen, K., Glover, F.: Metaheuristics. In: Glass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, pp. 960–970. Wiley, New York (2013)CrossRefGoogle Scholar
  18. 18.
    Herremans, D., Sörensen, K.: Composing first species counterpoint with a variable neighbourhood search algorithm. J. Math. Arts 6, 169–189 (2012)CrossRefGoogle Scholar
  19. 19.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1993)zbMATHGoogle Scholar
  20. 20.
    Mladenović, N., Hansen, P.: Variable neighbourhood search. Comput. Oper. Res. 24, 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fiechter, C.-N.: A parallel tabu search algorithm for large travelling salesman problems. Discrete Appl. Math. 51, 243–267 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing problem. Manag. sci. 40, 1276–1290 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matteo Balliauw
    • 1
    Email author
  • Dorien Herremans
    • 1
  • Daniel Palhazi Cuervo
    • 1
  • Kenneth Sörensen
    • 1
  1. 1.Faculty of Applied EconomicsUniversity of AntwerpAntwerpBelgium

Personalised recommendations