Histamine in Fish and Fishery Products

  • Salvatore Parisi
  • Caterina Barone
  • Giorgia Caruso
  • Antonino Santi Delia
  • Gabriella Caruso
  • Pasqualina Laganà
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The consumption of certain fish products containing high levels of histamine (and other biogenic amines) can result in an acute illness with allergy-like symptoms called scombroid syndrome. Fish accumulate toxic levels of histamine when their high level of histidine in muscle tissues is coupled with a proliferation of bacteria rich in the enzyme histidine decarboxylase. Other vasoactive amines—cadaverine, putrescine, etc.—may inhibit detoxification mechanisms that reduce the intestinal absorption of histamine. Moreover, histidine can be transformed by means of another metabolic pathway leading to accumulation in fish muscle of urocanic acid. Recently, interest has been extended to mesophilic and psychrotolerant bacteria. Histamine accumulation is traditionally correlated to microbially contaminated fish and poor storage conditions. In addition, the high thermal stability has to be considered. At present, different methods are available for the analytical determination of histamine ranging from the AOAC fluorometric method to HPLC, ELISA and rapid stick methods.


ELISA Histamine Histidine decarboxylase HPLC Mesophilic microorganism Psychrotolerant bacterium Refrigeration Scombroid syndrome 



Enzyme-Linked Immunosorbent Assay


Food and Agriculture Organization


Food and Drug Administration


Hazard Analysis and Critical Control Points


High-Performance Liquid Chromatography


World Health Organization


  1. Alini DA, Bassoni MS, Biancardi M, Magnani V, Martinotti RG (2006) The scombroid syndrome (Histamine Fish Poisoning): a review. Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Webzine Sanità Pubblica Veterinaria No 38 Novembre 2006. Accessed 20 April 2015
  2. Antoine FR, Wei CI, Littell RC, Marshall MR (1999) HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J Agric Food Chem 47(12):5100–5107. doi: 10.1021/jf990032+
  3. Behling AR, Taylor SL (1982) Bacterial histamine production as a function of temperature and time of incubation. J Food Sci 47(4):1311–1314. doi: 10.1111/j.1365-2621.1982.tb07675.x CrossRefGoogle Scholar
  4. Brunazzi G, Parisi S, Pereno A (2014) The Instrumental Role of Food Packaging. In: Brunazzi G, Parisi S, Pereno A (ed) The importance of packaging design for the chemistry of food products. Springer International Publishing, Heidelberg. doi: 10.1007/978-3-319-08452-7_3
  5. Cattaneo P (2011) Scombroid syndrome—histamine poisoning. Food In 1(2):5–80. doi: 10.13130/2039-1544/1702 Google Scholar
  6. Chamberlain T (2001) Histamine levels in longlined tuna in Fiji: a comparison of samples from two different body sites and the effect of storage at different temperatures. S Pac J Nat Sci 19(1):30–34. doi: 10.1071/SP01006 Google Scholar
  7. Chambers TL, Staruszkiewicz WF Jr (1978) Fluorometric determination of histamine in cheese. J Assoc Off Anal Chem 61(5):1092–1097Google Scholar
  8. Chang SC, Kung HF, Chen HC, Lin CS, Tsai YH (2008) Determination of histamine and bacterial isolation in swordfish fillets (Xiphias gladius) implicated in a food borne poisoning. Food Control 19(1):16–21. doi: 10.1016/j.foodcont.2007.01.005 CrossRefGoogle Scholar
  9. Dalgaard P (2009) Seafood Spoilage and Safety Predictor (SSSP). Version 3.1. Lyngby, Denmark, National Institute of Aquatic Resources (DTU Aqua), Technical University of DenmarkGoogle Scholar
  10. Dierick N, Vandekerckhove P, Demeyer D (1974) Changes in nonprotein nitrogen compounds during dry sausage ripening. J Food Sci 39(2):301–304. doi: 10.1111/j.1365-2621.1974.tb02880.x CrossRefGoogle Scholar
  11. Doeglas HMG, Huisman J, Nater JP (1967) Histamine intoxication after cheese. Lancet 2(7530):1361–1362. doi: 10.1016/S0140-6736(67)90948-8
  12. Du WX, Lin CM, Phu AT, Cornell JA, Marshall MR, Wei CI (2002) Development of biogenic amines in yellowfin tuna (Thunnus albacares): effect of storage and correlation with decarboxylase-positive bacterial flora. J Food Sci 67(1):292–301. doi: 10.1111/j.1365-2621.2002.tb11400.x CrossRefGoogle Scholar
  13. Duflos G, Dervin C, Malle P, Bouquelet S (1999) Relevance of matrix effect in determination of biogenic amines in plaice (Pleuronectes platessa) and whiting (Merlangus merlangus). J AOAC Int 82(5):1097–1101Google Scholar
  14. Emborg J (2007) Morganella psychrotolerans—identification, histamine formation and importance for histamine fish poisoning. Dissertation, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Systems BiologyInstitut for Systembiologi. Accessed 21 April 2015
  15. Emborg J, Dalgaard P (2006) Formation of histamine and biogenic amines in cold-smoked tuna—an investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. J Food Prot 69(4):897–906Google Scholar
  16. FAO/WHO (2012) Joint FAO/WHO expert meeting on the public health risks of histamine and other biogenic amines from fish and fishery products. 23–27 July 2012, FAO Headquarters, Rome. Meeting Report. The Food and Agriculture Organization (FAO) of the United States and the World Health Organization (WHO), Rome. Accessed 20 April 2015
  17. FDA (1982) Defect action levels for histamine in tuna, availability of guide. Fed Reg 470:40487–40488. Food and Drug Administration, Department of Health and Human Services, Silver SpringGoogle Scholar
  18. FDA (2005) Decomposition and histamine in raw, frozen tuna and mahi-mahi, canned tuna; and related species. Compliance Policy Guide (CPG) Sec. 540.525. Food and Drug Administration, Silver SpringGoogle Scholar
  19. FDA (2011) Fish and fishery products hazards and controls guidance, 4th edn. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park. Accessed 17 April 2015
  20. Guizani N, Al-Busaidy MA, Al-Belushi IM, Mothershaw A, Rahman MS (2005) The effect of storage temperature on histamine production and the freshness of yellowfin tuna (Thunnus albacares). Food Res Int 38(2):215–222. doi: 10.1016/j.foodres.2004.09.011 CrossRefGoogle Scholar
  21. Hastein T, Hjeltnes B, Lillehaug A, Utne Skare J, Berntssen M, Lundebye AK (2006) Food safety hazards that occur during the production stage: challenges for fish farming and the fishing industry. Rev Sci Tech 25(2):607–625Google Scholar
  22. Hernández-Herrero MM, Roig-Sagués AX, Rodríguez-Jerez JJ, Mora-Ventura MT (1999) Halotolerant and halophilic histamine-forming bacteria isolated during the ripening of salted Anchovies (Engraulis encrasicholus). J Food Prot 62(5):509–514Google Scholar
  23. Hungerford JM (2010) Scombroid poisoning: a review. Toxicon 56(2):231–243. doi: 10.1016/j.toxicon.2010.02.006 CrossRefGoogle Scholar
  24. Kahana LM, Todd E (1981) Histamine poisoning in a patient on isoniazid. Can Dis Wkly Rep 7:79–80Google Scholar
  25. Kanki M, Yoda T, Ishibashi M, Tsukamoto T (2004) Photobacterium phosphoreum caused a histamine fish poisoning incident. Int J Food Microbiol 92(1):79–87. doi: 10.1016/j.ijfoodmicro.2003.08.019 CrossRefGoogle Scholar
  26. Lehane L, Olley J (2000) Histamine fish poisoning revisited. Int J Food Microbiol 58(1–2):1–37. doi: 10.1016/S0168-1605(00)00296-8 CrossRefGoogle Scholar
  27. Leuschner RGK, Hammes WP (1999) Formation of biogenic amine in mayonnaise, herring and tuna fish salad by lactobacilli. Int J Food Sci Nutr 50(3):159–164. doi: 10.1080/096374899101193 CrossRefGoogle Scholar
  28. López-Sabater EI, Rodríguez-Jerez JJ, Roig-Sagués AX, Mora-Ventura MA (1994) Bacteriological quality of tuna fish (Thunnus thynnus) destined for canning: effect of tuna handling on presence of histidine decarboxylase bacteria and histamine level. J Food Prot 57(4):318–323Google Scholar
  29. Malle P, Valle M, Bouquelet S (1996) Assay of biogenic amines involved in fish decomposition. J AOAC Int 79(1):43–49Google Scholar
  30. Mayer K, Pause G (1972) Biogene amine in Sauerkraut. Lebensm Wiss Technol 5:108–109Google Scholar
  31. Naila A, Flint S, Fletcher G, Bremer P, Meerdink G (2010) Control of biogenic amines in food—existing and emerging approaches. J Food Sci 75(7):R139–R150. doi: 10.1111/j.1750-3841.2010.01774.x CrossRefGoogle Scholar
  32. Onal A (2007) A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem 103(4):1475–1486. doi: 10.1016/j.foodchem.2006.08.028 CrossRefGoogle Scholar
  33. Ough CS (1971) Measurement of histamine in California wines. J Agric Food Chem 19(2):241–244. doi: 10.1021/jf60174a038 CrossRefGoogle Scholar
  34. Őzogul E, Taylor KDA, Quantick P, Őzogul Y (2002) Changes in biogenic amines in herring stored under modified atmosphere and vacuum pack. J Food Sci 67(7):2497–2501. doi: 10.1111/j.1365-2621.2002.tb08765.x CrossRefGoogle Scholar
  35. Parisi S (2009) Intelligent packaging for the food industry. Polymer electronics—a flexible technology. Smithers Rapra Technology Ltd, ShawburyGoogle Scholar
  36. Prester L (2011) Biogenic amines in fish, fish products and shellfish: a review. Food Add Contam Part A 28(11):1547–1560. doi: 10.1080/19440049.2011.600728 CrossRefGoogle Scholar
  37. Rawles DD, Flick GJ, Martin RE (1996) Biogenic amines in fish and shellfish. Adv Food Nutr Res 39:329–365. doi: 10.1016/S1043-4526(08)60076-5 CrossRefGoogle Scholar
  38. Rossano R, Mastrangelo L, Ungaro N, Riccio P (2006) Influence of storage temperature and freezing time on histamine level in the European anchovy Engraulis encrasicholus (L., 1758): a study by capillary electrophoresis. J Chrom B 830, 1:161–164. doi: 10.1016/j.jchromb.2005.10.026
  39. Ruiz-Capillas C, Moral A (2004) Free amino acids and biogenic amines in red and white muscle of tuna stored in controlled atmospheres. Amino Acids 26(2):125–132. doi: 10.1007/s00726-003-0054-4 CrossRefGoogle Scholar
  40. Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29(7):675–690. doi: 10.1016/S0963-9969(96)00066-X CrossRefGoogle Scholar
  41. Silva CCG, Da Ponte DBJ, Dapkevicius MLNE (1998) Storage temperature effect on histamine formation in big eye tuna and skipjack. J Food Sci 63(4):644–647. doi: 10.1111/j.1365-2621.1998.tb15803.x CrossRefGoogle Scholar
  42. Taylor SL (1986) Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol 17(2):91–128. doi: 10.3109/10408448609023767 CrossRefGoogle Scholar
  43. Taylor SL, Lieber ER (1979) In vivo inhibition of rat intestinal histamine metabolizing enzymes. Food Cosmet Toxicol 17(3):237–240. doi: 10.1016/0015-6264(79)90287-6 CrossRefGoogle Scholar
  44. Taylor SL, Leatherwood M, Lieber ER (1978) Histamine in sauerkraut. J Food Sci 43(3):1030. doi: 10.1111/j.1365-2621.1978.tb02481.x CrossRefGoogle Scholar
  45. Tortorella V, Masciari P, Pezzi M, Mola A, Tiburzi SP, Zinzi MC, Scozzafava A, Verre M (2014) Histamine poisoning from ingestion of fish or scombroid syndrome. Case Rep Emerg Med Article ID 482531. doi: 10.1155/2014/482531
  46. Tsironi T, Gogou E, Velliou E, Taoukis PS (2008) Application and validation of the TTI based chill chain management system SMAS (Safety monitoring and assurance system) on shelf life optimization of vacuum packed chilled tuna. Int J Food Microbiol 128(1):108–115. doi: 10.1016/j.ijfoodmicro.2008.07.025 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Salvatore Parisi
    • 1
  • Caterina Barone
    • 2
  • Giorgia Caruso
    • 3
  • Antonino Santi Delia
    • 4
  • Gabriella Caruso
    • 5
  • Pasqualina Laganà
    • 4
  1. 1.Industrial ConsultantPalermoItaly
  2. 2.ISO 9001:2008 AuditorPalermoItaly
  3. 3.Industrial ConsultantPalermoItaly
  4. 4.Department of Biomedical Sciences and Morphological and Functional ImagesUniversity of MessinaMessinaItaly
  5. 5.Italian National Research Council, Institute for Coastal Marine EnvironmentMessinaItaly

Personalised recommendations