Verifying Calculations - Forty Years On pp 59-94 | Cite as

# The Constitutive Relation Error Method: A General Verification Tool

Chapter

First Online:

## Abstract

This chapter reviews the Constitutive Relation Error method as a general verification tool which is very suitable to compute strict and effective error bounds for linear and more generally convex Structural Mechanics problems. The review is focused on the basic features of the method and the most recent developments.

### Keywords

A posteriori error estimation Constitutive relation error Duality Goal-oriented control Nonlinear problems PGD models### References

- 1.I. Babus̆ka, T. Strouboulis,
*The Finite Element Method and Its Reliability*(Oxford University Press, Oxford, 2001)Google Scholar - 2.N.E. Wiberg, P. Diez, Special issue. Comput. Methods Appl. Mech. Eng.
**195**, 4–6 (2006)Google Scholar - 3.P. Ladevèze, J.-T. Oden,
*Advances in Adaptative Computational Methods in Mechanics*(Elsevier, New York, 1998)Google Scholar - 4.P. Ladevèze, J.-P. Pelle,
*Mastering Calculations in Linear and Nonlinear Mechanics*(Springer, New York, 2004)Google Scholar - 5.E. Stein,
*Error Controlled Adaptive Finite Elements in Solid Mechanics*(Wiley, Chichester, 2003)Google Scholar - 6.P. Ladevèze, Comparison of continuum mechanics models (in French). PhD Thesis, Paris 6 University (1975)Google Scholar
- 7.I. Babus̆ka, W.C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng.
**12**, 1597–1615 (1978)Google Scholar - 8.O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Meth. Eng.
**24**, 337–357 (1987)Google Scholar - 9.P. Ladevèze, P. Rougeot, P. Blanchard, J.P. Moreau, Local error estimators for finite element linear analysis. Comput. Methods Appl. Mech. Eng.
**176**, 231–246 (1999)CrossRefMATHGoogle Scholar - 10.J. Peraire, A.T. Patera, in
*Bounds for Linear-functional Outputs of Coercive Partial Differential Equations: Local Indicators and Adaptive Refinements*, eds. by P. Ladevèze, J.-T. Oden. Advances in Adaptive Computational Methods in Mechanics (Elsevier, New York, 1998), pp. 199–216Google Scholar - 11.S. Prudhomme, J.T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng.
**176**, 313–331 (1999)MathSciNetCrossRefMATHGoogle Scholar - 12.R. Rannacher, F.T. Suttmeier, in
*A Posteriori Error Control and Mesh Adaptation for Finite Element Models in Elasticity and Elasto-plasticity*, eds. by P. Ladevèze, J.-T. Oden. Advances in Adaptative Computational Methods in Mechanics (Elsevier, New York, 1998), pp. 275–292Google Scholar - 13.T. Strouboulis, I. Babus̆ka, D. Datta, K. Copps, S.K. Gangaraj, A posteriori estimation and adaptive control of the error in the quantity of interest—part 1: a posteriori estimation of the error in the Von Mises stress and the stress intensity factors. Comput. Methods Appl. Mech. Eng.
**181**, 261–294 (2000)Google Scholar - 14.R. Becker, R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math.
**4**, 237–264 (1996)MathSciNetMATHGoogle Scholar - 15.K. Eriksson, D. Estep, P. Hansbo, C. Johnson, in
*Introduction to Adaptive Methods For Partial Differential Equations*, ed. by A. Isereles. Acta Numerica (Cambridge University Press, Cambridge, 1995), pp. 105–159Google Scholar - 16.F. Cirak, E. Ramm, A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput. Methods Appl. Mech. Eng.
**156**, 351–362 (1998)MathSciNetCrossRefMATHGoogle Scholar - 17.N. Parès, J. Bonet, A. Huerta, J. Peraire, The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations. Comput. Methods Appl. Mech. Eng.
**195**(4–6), 406–429 (2006)CrossRefMATHGoogle Scholar - 18.H.J. Greenberg, The determination of upper and lower bounds for the solution of Dirichlet problem. J. Math. Phys.
**27**, 161–182 (1948)MATHGoogle Scholar - 19.K. Washizu, Bounds for solutions of boundary value problems in elasticity. J. Math. Phys.
**32**, 117–128 (1953)MathSciNetMATHGoogle Scholar - 20.P. Ladevèze, Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems. Comptes Rendus Acadmie des Sciences—Mcanique, Paris
**334**, 399–407 (2006)MATHGoogle Scholar - 21.P. Ladevèze, B. Blaysat, E. Florentin, Strict upper bounds of the error in calculated outputs of interest for plasticity problems. Comput. Methods Appl. Mech. Eng.
**245–246**, 194–205 (2012)CrossRefGoogle Scholar - 22.J. Waeytens, L. Chamoin, P. Ladevèze, Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems. Comput. Mech.
**49**(3), 291–307 (2012)MathSciNetCrossRefMATHGoogle Scholar - 23.L. Chamoin, P. Ladevèze, Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods. Int. J. Numer. Meth. Eng.
**71**(12), 1387–1411 (2007)CrossRefMATHGoogle Scholar - 24.L. Chamoin, P. Ladevèze, A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems. Comput. Methods Appl. Mech. Eng.
**197**(9–12), 994–1014 (2008)CrossRefMATHGoogle Scholar - 25.P. Ladevèze, L. Chamoin, Calculation of strict error bounds for finite element approximations of nonlinear pointwise quantities of interest. Int. J. Numer. Meth. Eng.
**84**, 1638–1664 (2010)CrossRefMATHGoogle Scholar - 26.P. Ladevèze, L. Chamoin, E. Florentin, A new non-intrusive technique for the construction of admissible stress fields in model verification. Comput. Methods Appl. Mech. Eng.
**199**(9–12), 766–777 (2010)CrossRefMATHGoogle Scholar - 27.P. Ladevèze, F. Pled, L. Chamoin, New bounding techniques for goal-oriented error estimation applied to linear problems. Int. J. Numer. Meth. Eng.
**93**, 1345–1380 (2013)CrossRefGoogle Scholar - 28.L. Chamoin, E. Florentin, S. Pavot, V. Visseq, Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems. Comput. Struct.
**106–107**, 189–195 (2012)CrossRefGoogle Scholar - 29.P. Ladevèze, Strict upper error bounds for computed outputs of interest in computational structural mechanics. Comput. Mech.
**42**(2), 271–286 (2008)CrossRefMATHGoogle Scholar - 30.P. Ladevèze, L. Chamoin, On the verification of model reduction methods based on the Proper Generalized Decomposition. Comput. Methods Appl. Mech. Eng.
**200**, 2032–2047 (2011)CrossRefMATHGoogle Scholar - 31.P. Ladevèze, J. Waeytens, Model verification in dynamics through strict upper error bounds. Comput. Methods Appl. Mech. Eng.
**198**(21–26), 1775–1784 (2009)CrossRefMATHGoogle Scholar - 32.J. Panetier, P. Ladevèze, F. Louf, Strict bounds for computed stress intensity factors. Comput. Struct.
**871**(15–16), 1015–1021 (2009)CrossRefGoogle Scholar - 33.J. Panetier, P. Ladevèze, L. Chamoin, Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with the XFEM. Int. J. Numer. Meth. Eng.
**81**(6), 671–700 (2010)MATHGoogle Scholar - 34.P. Ladevèze, E.A.W. Maunder, A general method for recovering equilibrating element tractions. Comput. Methods Appl. Mech. Eng.
**137**, 111–151 (1996)CrossRefMATHGoogle Scholar - 35.P. Ladevèze, D. Leguillon, Error estimate procedure in the finite element method and application. SIAM J. Numer. Anal.
**20**(3), 485–509 (1983)MathSciNetCrossRefMATHGoogle Scholar - 36.F. Pled, L. Chamoin, P. Ladevèze, On the techniques for constructing admissible stress fields in model verification: performances on engineering examples. Int. J. Numer. Meth. Eng.
**88**(5), 409–441 (2011)CrossRefMATHGoogle Scholar - 37.P. Ladevèze, J.L. Gastine, P. Marin, J.P. Pelle, Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput. Methods Appl. Mech. Eng.
**94**(3), 303–314 (1992)CrossRefMATHGoogle Scholar - 38.W. Prager, J.L. Synge, Approximation in elasticity based on the concept of functions spaces. Q. Appl. Math.
**5**, 261–269 (1947)MathSciNetGoogle Scholar - 39.P. Ladevèze, N. Moës, A new a posteriori error estimation for nonlinear time-dependent finite element analysis. Comput. Methods Appl. Mech. Eng.
**157**, 45–68 (1998)CrossRefMATHGoogle Scholar - 40.N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng.
**46**, 131–150 (1999)CrossRefMATHGoogle Scholar - 41.T. Strouboulis, I. Babus̆ka, K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng.
**181**(1–3), 43–69 (2000)Google Scholar - 42.R.D. Mindlin, Force at a point in the interior of a semi-infinite solid. J. Phys.
**7**, 195–202 (1936)MATHGoogle Scholar - 43.S. Vijayakumar, E.C. Cormack, Green’s functions for the biharmonic equation: bonded elastic media. SIAM J. Appl. Math.
**47**(5) (1987)Google Scholar - 44.M. Dahan, M. Predeleanu, Solutions fondamentales pour un milieu élastique à isotropie transverse. ZAMP
**31**, 413–424 (1980)MathSciNetCrossRefMATHGoogle Scholar - 45.P. Ladevèze, E. Florentin, Verification of stochastic models in uncertain environments using the constitutive relation error method. Comput. Methods Appl. Mech. Eng.
**196**, 225–234 (2006)CrossRefMATHGoogle Scholar - 46.L. Gallimard, J. Panetier, Error estimation of stress intensity factors for mixed-mode cracks. Int. J. Numer. Meth. Eng.
**68**(3), 299–316 (2006)MathSciNetCrossRefMATHGoogle Scholar - 47.T.J. Stone, I. Babus̆ka, A numerical method with a posteriori error estimation for determining the path taken by a propagating crack. Comput. Methods Appl. Mech. Eng.
**160**, 245–271 (1998)Google Scholar - 48.I. Babus̆ka, A. Miller, The post-processing approach in the finite element method—part 2: the calculation of stress intensity factors. Int. J. Numer. Methods Eng.
**20**, 1111–1129 (1984)Google Scholar - 49.F. Chinesta, A. Ammar, E. Cueto, Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Methods Eng.
**17**(4), 327–350 (2010)MathSciNetCrossRefMATHGoogle Scholar - 50.P. Ladevèze,
*Nonlinear Computational Structural Mechanics—New Approaches and Non-Incremental Methods of Calculation*(Springer, New York, 1999)Google Scholar - 51.A. Ammar, F. Chinesta, P. Diez, A. Huerta, An error estimator for separated representations of highly multidimensional models. Comput. Methods Appl. Mech. Eng.
**199**, 1872–1880 (2010)MathSciNetCrossRefMATHGoogle Scholar - 52.P.E. Allier, L. Chamoin, P. Ladevèze, Proper Generalized Decomposition computational methods on a benchmark problem. Submitted to AMSES (2015)Google Scholar
- 53.L. Chamoin, P. Ladevèze, Robust control of PGD-based numerical simulations. Eur. J. Comput. Mech.
**21**(3–6), 195–207 (2012)Google Scholar - 54.P. Ladevèze, L. Chamoin, in
*Toward Guaranteed PGD-reduced Models*, eds. by G. Zavarise, D.P. Boso. Bytes and Science (CIMNE, 2012)Google Scholar - 55.N. Pares, P. Diez, A. Huerta, Subdomain-based flux-free a posteriori error estimators. Comput. Methods Appl. Mech. Eng.
**195**(4–6), 297–323 (2006)MathSciNetCrossRefMATHGoogle Scholar - 56.J.P. Moitinho de Almeida, E.A.W. Maunder, Recovery of equilibrium on star patches using a partition of unity technique. Int. J. Numer. Meth. Eng.
**79**, 1493–1516 (2009)Google Scholar - 57.F. Pled, L. Chamoin, P. Ladevèze, An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses. Comput. Mech.
**49**(3), 357–378 (2012)MathSciNetCrossRefMATHGoogle Scholar - 58.E. Florentin, L. Gallimard, J.P. Pelle, Evaluation of the local quality of stresses in 3D finite element analysis. Comput. Methods Appl. Mech. Eng.
**191**, 4441–4457 (2002)CrossRefMATHGoogle Scholar

## Copyright information

© The Author(s) 2016