Advertisement

The Constitutive Relation Error Method: A General Verification Tool

  • Pierre Ladevèze
  • Ludovic Chamoin
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter reviews the Constitutive Relation Error method as a general verification tool which is very suitable to compute strict and effective error bounds for linear and more generally convex Structural Mechanics problems. The review is focused on the basic features of the method and the most recent developments.

Keywords

A posteriori error estimation Constitutive relation error Duality Goal-oriented control Nonlinear problems PGD models 

References

  1. 1.
    I. Babus̆ka, T. Strouboulis, The Finite Element Method and Its Reliability (Oxford University Press, Oxford, 2001)Google Scholar
  2. 2.
    N.E. Wiberg, P. Diez, Special issue. Comput. Methods Appl. Mech. Eng. 195, 4–6 (2006)Google Scholar
  3. 3.
    P. Ladevèze, J.-T. Oden, Advances in Adaptative Computational Methods in Mechanics (Elsevier, New York, 1998)Google Scholar
  4. 4.
    P. Ladevèze, J.-P. Pelle, Mastering Calculations in Linear and Nonlinear Mechanics (Springer, New York, 2004)Google Scholar
  5. 5.
    E. Stein, Error Controlled Adaptive Finite Elements in Solid Mechanics (Wiley, Chichester, 2003)Google Scholar
  6. 6.
    P. Ladevèze, Comparison of continuum mechanics models (in French). PhD Thesis, Paris 6 University (1975)Google Scholar
  7. 7.
    I. Babus̆ka, W.C. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng. 12, 1597–1615 (1978)Google Scholar
  8. 8.
    O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Meth. Eng. 24, 337–357 (1987)Google Scholar
  9. 9.
    P. Ladevèze, P. Rougeot, P. Blanchard, J.P. Moreau, Local error estimators for finite element linear analysis. Comput. Methods Appl. Mech. Eng. 176, 231–246 (1999)CrossRefMATHGoogle Scholar
  10. 10.
    J. Peraire, A.T. Patera, in Bounds for Linear-functional Outputs of Coercive Partial Differential Equations: Local Indicators and Adaptive Refinements, eds. by P. Ladevèze, J.-T. Oden. Advances in Adaptive Computational Methods in Mechanics (Elsevier, New York, 1998), pp. 199–216Google Scholar
  11. 11.
    S. Prudhomme, J.T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176, 313–331 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R. Rannacher, F.T. Suttmeier, in A Posteriori Error Control and Mesh Adaptation for Finite Element Models in Elasticity and Elasto-plasticity, eds. by P. Ladevèze, J.-T. Oden. Advances in Adaptative Computational Methods in Mechanics (Elsevier, New York, 1998), pp. 275–292Google Scholar
  13. 13.
    T. Strouboulis, I. Babus̆ka, D. Datta, K. Copps, S.K. Gangaraj, A posteriori estimation and adaptive control of the error in the quantity of interest—part 1: a posteriori estimation of the error in the Von Mises stress and the stress intensity factors. Comput. Methods Appl. Mech. Eng. 181, 261–294 (2000)Google Scholar
  14. 14.
    R. Becker, R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4, 237–264 (1996)MathSciNetMATHGoogle Scholar
  15. 15.
    K. Eriksson, D. Estep, P. Hansbo, C. Johnson, in Introduction to Adaptive Methods For Partial Differential Equations, ed. by A. Isereles. Acta Numerica (Cambridge University Press, Cambridge, 1995), pp. 105–159Google Scholar
  16. 16.
    F. Cirak, E. Ramm, A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput. Methods Appl. Mech. Eng. 156, 351–362 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    N. Parès, J. Bonet, A. Huerta, J. Peraire, The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations. Comput. Methods Appl. Mech. Eng. 195(4–6), 406–429 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    H.J. Greenberg, The determination of upper and lower bounds for the solution of Dirichlet problem. J. Math. Phys. 27, 161–182 (1948)MATHGoogle Scholar
  19. 19.
    K. Washizu, Bounds for solutions of boundary value problems in elasticity. J. Math. Phys. 32, 117–128 (1953)MathSciNetMATHGoogle Scholar
  20. 20.
    P. Ladevèze, Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems. Comptes Rendus Acadmie des Sciences—Mcanique, Paris 334, 399–407 (2006)MATHGoogle Scholar
  21. 21.
    P. Ladevèze, B. Blaysat, E. Florentin, Strict upper bounds of the error in calculated outputs of interest for plasticity problems. Comput. Methods Appl. Mech. Eng. 245–246, 194–205 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Waeytens, L. Chamoin, P. Ladevèze, Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems. Comput. Mech. 49(3), 291–307 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    L. Chamoin, P. Ladevèze, Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods. Int. J. Numer. Meth. Eng. 71(12), 1387–1411 (2007)CrossRefMATHGoogle Scholar
  24. 24.
    L. Chamoin, P. Ladevèze, A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems. Comput. Methods Appl. Mech. Eng. 197(9–12), 994–1014 (2008)CrossRefMATHGoogle Scholar
  25. 25.
    P. Ladevèze, L. Chamoin, Calculation of strict error bounds for finite element approximations of nonlinear pointwise quantities of interest. Int. J. Numer. Meth. Eng. 84, 1638–1664 (2010)CrossRefMATHGoogle Scholar
  26. 26.
    P. Ladevèze, L. Chamoin, E. Florentin, A new non-intrusive technique for the construction of admissible stress fields in model verification. Comput. Methods Appl. Mech. Eng. 199(9–12), 766–777 (2010)CrossRefMATHGoogle Scholar
  27. 27.
    P. Ladevèze, F. Pled, L. Chamoin, New bounding techniques for goal-oriented error estimation applied to linear problems. Int. J. Numer. Meth. Eng. 93, 1345–1380 (2013)CrossRefGoogle Scholar
  28. 28.
    L. Chamoin, E. Florentin, S. Pavot, V. Visseq, Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems. Comput. Struct. 106–107, 189–195 (2012)CrossRefGoogle Scholar
  29. 29.
    P. Ladevèze, Strict upper error bounds for computed outputs of interest in computational structural mechanics. Comput. Mech. 42(2), 271–286 (2008)CrossRefMATHGoogle Scholar
  30. 30.
    P. Ladevèze, L. Chamoin, On the verification of model reduction methods based on the Proper Generalized Decomposition. Comput. Methods Appl. Mech. Eng. 200, 2032–2047 (2011)CrossRefMATHGoogle Scholar
  31. 31.
    P. Ladevèze, J. Waeytens, Model verification in dynamics through strict upper error bounds. Comput. Methods Appl. Mech. Eng. 198(21–26), 1775–1784 (2009)CrossRefMATHGoogle Scholar
  32. 32.
    J. Panetier, P. Ladevèze, F. Louf, Strict bounds for computed stress intensity factors. Comput. Struct. 871(15–16), 1015–1021 (2009)CrossRefGoogle Scholar
  33. 33.
    J. Panetier, P. Ladevèze, L. Chamoin, Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with the XFEM. Int. J. Numer. Meth. Eng. 81(6), 671–700 (2010)MATHGoogle Scholar
  34. 34.
    P. Ladevèze, E.A.W. Maunder, A general method for recovering equilibrating element tractions. Comput. Methods Appl. Mech. Eng. 137, 111–151 (1996)CrossRefMATHGoogle Scholar
  35. 35.
    P. Ladevèze, D. Leguillon, Error estimate procedure in the finite element method and application. SIAM J. Numer. Anal. 20(3), 485–509 (1983)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    F. Pled, L. Chamoin, P. Ladevèze, On the techniques for constructing admissible stress fields in model verification: performances on engineering examples. Int. J. Numer. Meth. Eng. 88(5), 409–441 (2011)CrossRefMATHGoogle Scholar
  37. 37.
    P. Ladevèze, J.L. Gastine, P. Marin, J.P. Pelle, Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput. Methods Appl. Mech. Eng. 94(3), 303–314 (1992)CrossRefMATHGoogle Scholar
  38. 38.
    W. Prager, J.L. Synge, Approximation in elasticity based on the concept of functions spaces. Q. Appl. Math. 5, 261–269 (1947)MathSciNetGoogle Scholar
  39. 39.
    P. Ladevèze, N. Moës, A new a posteriori error estimation for nonlinear time-dependent finite element analysis. Comput. Methods Appl. Mech. Eng. 157, 45–68 (1998)CrossRefMATHGoogle Scholar
  40. 40.
    N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46, 131–150 (1999)CrossRefMATHGoogle Scholar
  41. 41.
    T. Strouboulis, I. Babus̆ka, K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1–3), 43–69 (2000)Google Scholar
  42. 42.
    R.D. Mindlin, Force at a point in the interior of a semi-infinite solid. J. Phys. 7, 195–202 (1936)MATHGoogle Scholar
  43. 43.
    S. Vijayakumar, E.C. Cormack, Green’s functions for the biharmonic equation: bonded elastic media. SIAM J. Appl. Math. 47(5) (1987)Google Scholar
  44. 44.
    M. Dahan, M. Predeleanu, Solutions fondamentales pour un milieu élastique à isotropie transverse. ZAMP 31, 413–424 (1980)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    P. Ladevèze, E. Florentin, Verification of stochastic models in uncertain environments using the constitutive relation error method. Comput. Methods Appl. Mech. Eng. 196, 225–234 (2006)CrossRefMATHGoogle Scholar
  46. 46.
    L. Gallimard, J. Panetier, Error estimation of stress intensity factors for mixed-mode cracks. Int. J. Numer. Meth. Eng. 68(3), 299–316 (2006)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    T.J. Stone, I. Babus̆ka, A numerical method with a posteriori error estimation for determining the path taken by a propagating crack. Comput. Methods Appl. Mech. Eng. 160, 245–271 (1998)Google Scholar
  48. 48.
    I. Babus̆ka, A. Miller, The post-processing approach in the finite element method—part 2: the calculation of stress intensity factors. Int. J. Numer. Methods Eng. 20, 1111–1129 (1984)Google Scholar
  49. 49.
    F. Chinesta, A. Ammar, E. Cueto, Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Methods Eng. 17(4), 327–350 (2010)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    P. Ladevèze, Nonlinear Computational Structural Mechanics—New Approaches and Non-Incremental Methods of Calculation (Springer, New York, 1999)Google Scholar
  51. 51.
    A. Ammar, F. Chinesta, P. Diez, A. Huerta, An error estimator for separated representations of highly multidimensional models. Comput. Methods Appl. Mech. Eng. 199, 1872–1880 (2010)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    P.E. Allier, L. Chamoin, P. Ladevèze, Proper Generalized Decomposition computational methods on a benchmark problem. Submitted to AMSES (2015)Google Scholar
  53. 53.
    L. Chamoin, P. Ladevèze, Robust control of PGD-based numerical simulations. Eur. J. Comput. Mech. 21(3–6), 195–207 (2012)Google Scholar
  54. 54.
    P. Ladevèze, L. Chamoin, in Toward Guaranteed PGD-reduced Models, eds. by G. Zavarise, D.P. Boso. Bytes and Science (CIMNE, 2012)Google Scholar
  55. 55.
    N. Pares, P. Diez, A. Huerta, Subdomain-based flux-free a posteriori error estimators. Comput. Methods Appl. Mech. Eng. 195(4–6), 297–323 (2006)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    J.P. Moitinho de Almeida, E.A.W. Maunder, Recovery of equilibrium on star patches using a partition of unity technique. Int. J. Numer. Meth. Eng. 79, 1493–1516 (2009)Google Scholar
  57. 57.
    F. Pled, L. Chamoin, P. Ladevèze, An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses. Comput. Mech. 49(3), 357–378 (2012)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    E. Florentin, L. Gallimard, J.P. Pelle, Evaluation of the local quality of stresses in 3D finite element analysis. Comput. Methods Appl. Mech. Eng. 191, 4441–4457 (2002)CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.LMT (ENS Cachan, CNRS, Paris-Saclay University)CachanFrance

Personalised recommendations