Fundaments of Recovery-Based Error Estimation and Bounding

Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Several error estimators have been developed in order to control the accuracy of the Finite Element simulations. Most of these techniques can be divided in three main groups: (i) residual-based error estimators, (ii) dual techniques and (iii) recovery-based error estimators. In this work we will introduce the main ideas of the recovery-based error estimators.

Keywords

Error estimation Super-convergent Patch Recovery Recovery-based error estimators Error bounding Error in Quantities of Interest 

References

  1. 1.
    O.C. Zienkiewicz, R.Taylor, The Finite Element Method, vol 1, 4th edn. (Oxford, Butterworth-Heinemann, 1989)Google Scholar
  2. 2.
    O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Eng. 33(7), 1365–1382 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Z. Zhang, J.Z. Zhu, Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method. Comput. Methods Appl. Mech. Eng. 163(1–4), 159–170 (1995)Google Scholar
  6. 6.
    R. Rodriguez, Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ. Equ. 635(10), 625–635 (1994)CrossRefGoogle Scholar
  7. 7.
    R. Durán, M.A. Muschietti, R. Rodriguez, On the asymptotic exactness of error estimators for linear triangular finite elements. Numerische Mathematik 59, 107–127 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    I. Babuška, T. Strouboulis, C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Eng. 114(3–4), 307–378 (1994)CrossRefGoogle Scholar
  9. 9.
    I. Babuška, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj, K. Copps, Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37(7), 1073–1123 (1994)CrossRefMATHGoogle Scholar
  10. 10.
    I. Babuška, T. Strouboulis, C.S. Upadhyay, A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems, with particular reference to the behaviour near the boundary. Int. J. Numer. Methods Eng. 40(14), 2521–2577 (1997)CrossRefMATHGoogle Scholar
  11. 11.
    M. Ainsworth, J.Z. Zhu, A.W. Craig, O.C. Zienkiewicz, Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method. Int. J. Numer. Methods Eng. 28(9), 2161–2174 (1989)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J.J. Ródenas, M. Tur, F.J. Fuenmayor, A. Vercher, Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int. J. Numer. Methods Eng. 70(6), 705–727 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    J.J. Ródenas, O.A. González-Estrada, P. Díez, F.J. Fuenmayor, Accurate recovery-based upper error bounds for the extended finite element framework. Comput. Methods Appl. Mech. Eng. 199(37–40), 2607–2621 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    E. Nadal, S. Bordas, J.J. Ródenas, J.E. Tarancón, M. Tur, Accurate Stress Recovery for the Two-Dimensional Fixed Grid Finite Element Method, in Procedings of the Tenth International Conference on Computational Structures Technology, pp. 1–20 (2010)Google Scholar
  15. 15.
    S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 2nd edn. (McGraw-Hill, New York, 1951)Google Scholar
  16. 16.
    T. Blacker, T. Belytschko, Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int. J. Numer. Methods Eng. 37(3), 517–536 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    O.A. González-Estrada, J.J. Ródenas, S.P.A. Bordas, M. Duflot, P. Kerfriden, E. Giner, On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng. Comput. 29(8) (2012)Google Scholar
  18. 18.
    J.J. Ródenas, O.A. González-Estrada, J.E. Tarancón, F.J. Fuenmayor, A recovery-type error estimator for the extended finite element method based on singular\(+\)smooth stress field splitting. Int. J. Numer. Methods Eng. 76(4), 545–571 (2008)CrossRefMATHGoogle Scholar
  19. 19.
    S.P.A. Bordas, M. Duflot, Derivative recovery and a posteriori error estimate for extended finite elements. Comput. Methods Appl. Mech. Eng. 196(35–36), 3381–3399 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    M. Duflot, S.P.A. Bordas, A posteriori error estimation for extended finite elements by an extended global recovery. Int. J. Numer. Methods Eng. 76, 1123–1138 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    B.A. Szabó, I. Babuška, Finite Element Analysis (Wiley, New York, 1991)MATHGoogle Scholar
  22. 22.
    J.J. Ródenas, E. Giner, J.E. Tarancón, O.A. González-Estrada, A Recovery Error Estimator for Singular Problems Using Singular\(+\)Smooth Field Splitting, in Fifth International Conference on Engineering Computational Technology, ed. by B.H.V. Topping, G. Montero, R. Montenegro (Civil-Comp Press, Stirling, Scotland, 2006)Google Scholar
  23. 23.
    E. Nadal, Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization. Ph.D. thesis, Universitat Politècnica de València (2014)Google Scholar
  24. 24.
    O.A. González-Estrada, E. Nadal, J.J. Ródenas, P. Kerfriden, S.P.A. Bordas, F.J. Fuenmayor, Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput. Mech. (2013)Google Scholar
  25. 25.
    P.Díez, J.J. Ródenas, O.C. Zienkiewicz, Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int. J. Numer. Methods Eng. 69(200610), 2075–2098 (2007)Google Scholar
  26. 26.
    P.G. Ciarlet, The Finite Element Method For Elliptic Problems, 1st edn. (North-Holland publishing company, Amsterdam, 1978)Google Scholar
  27. 27.
    T. Gerasimov, M. Rüter, E. Stein, An explicit residual-type error estimator for Q 1 -quadrilateral extended finite element method in two-dimensional linear elastic fracture mechanics. Int. J. Numer. Methods Eng. 90, 1118–1155 (2012)CrossRefMATHGoogle Scholar
  28. 28.
    C. Carstensen, S.A. Funken, Constants in Clément-Interpolation error and residual-based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8(3), 153–175 (2000)MathSciNetMATHGoogle Scholar
  29. 29.
    P. Díez, N. Parés, A. Huerta, Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int. J. Numer. Methods Eng. 56(10), 1465–1488 (2003)CrossRefMATHGoogle Scholar
  30. 30.
    N.E. Wiberg, F. Abdulwahab, Error estimation with postprocessed finite element solutions. Comput. Struct. 64(1–4), 113–137 (1997)CrossRefMATHGoogle Scholar
  31. 31.
    I. Babushka, T. Strouboulisb, S.K. Gangarajb, A posteriori estimation of the error in the recovered derivatives the finite element solution. Comput. Method 150, 369–396 (1997)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.École Centrale de Nantes (ECN). 1NantesFrance
  2. 2.Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations