What’s Next?

  • Philip Hackney
  • Marcy Robertson
  • Donald Yau
Part of the Lecture Notes in Mathematics book series (LNM, volume 2147)


In this brief chapter, we mention several problems related to infinity properads that we find interesting. These cover applications as well as conceptual understanding of infinity properads.


Deformation Complex Chord Diagram Koszul Duality Graphical Category Free Loop Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bri00]
    M. Brinkmeier, On Operads. Ph.D. dissertation, Universität Osnabrück, 2000zbMATHGoogle Scholar
  2. [Cha05]
    D. Chataur, A bordism approach to string topology. Int. Math. Res. Not. Vol. 2005(46), 2829–2875 (2005)MathSciNetCrossRefGoogle Scholar
  3. [CM11]
    D.-C. Cisinski, I. Moerdijk, Dendroidal sets as models for homotopy operads. J. Topol. 4, 257–299 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  4. [CG04]
    R.L. Cohen, V. Godin, A polarized view of string topology, in Topology, Geometry and Quantum Field Theory. London Mathematical Society Lecture Note Series, vol. 308 (Cambridge University Press, Cambridge, 2004), pp. 127–154Google Scholar
  5. [Fao13]
    G. Faonte, Simplicial nerve of an A-infinity category, (2013)Google Scholar
  6. [Gan04]
    W.L. Gan, Koszul duality for dioperads. Math. Res. Lett. 10, 109–124 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. [Ger64]
    M. Gerstenhaber, On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  8. [GK95]
    V. Ginzburg, M. Kapranov, Koszul duality for operads. Duke Math. J. 76, 203–272 (1995)MathSciNetCrossRefGoogle Scholar
  9. [Gra07]
    J. Granåker, Strong homotopy properads. Int. Math. Res. Not. 2007 (2007)Google Scholar
  10. [HR12]
    P. Hackney, M. Robertson, The homotopy theory of props, (2012)Google Scholar
  11. [HRY14]
    P. Hackney, M. Robertson, D. Yau, Relative left properness of colored operads, (2014)Google Scholar
  12. [Heu11a]
    G. Heuts, Algebras over infinity-operads, (2011)Google Scholar
  13. [Joy08]
    A. Joyal, The Theory of Quasi-categories and Its Applications. Preprint in progress (2008)Google Scholar
  14. [JK11]
    A. Joyal, J. Kock, Feynman graphs, and nerve theorem for compact symmetric multicategories (extended abstract). Electron. Notes Theor. Comput. Sci. 270(2), 105–113 (2011).
  15. [vdL04]
    P. van der Laan, Operads: Hopf algebras and coloured Koszul duality. PhD. thesis, Universiteit Utrecht, 2004Google Scholar
  16. [LeG14]
    B. Le Grignou, From homotopy operads to infinity-operads, (2014)Google Scholar
  17. [Lei08]
    T. Leinster, How I Learned to Love the Nerve Construction (2008). Published on The n-Category Café on January 6, 2008.
  18. [Lur14]
  19. [Lur09]
    J. Lurie, Higher Topos Theory. Annals of Mathematics Studies (Princeton University Press, Princeton, 2009)zbMATHGoogle Scholar
  20. [MV09a]
    S. Merkulov, B. Vallette, Deformation theory of representations of prop(erad)s, I. J. Reine Angew. Math. 634, 51–106 (2009)zbMATHMathSciNetGoogle Scholar
  21. [MV09b]
    S. Merkulov, B. Vallette, Deformation theory of representations of prop(erad)s, II. J. Reine Angew. Math. 636, 123–174 (2009)zbMATHMathSciNetGoogle Scholar
  22. [PR11]
    K. Poirier, N. Rounds, Compactifying string topology, (2011)Google Scholar
  23. [Qui67]
    D.G. Quillen, Homotopical Algebra. Lecture Notes in Mathematics, vol. 43 (Springer, Berlin, 1967)Google Scholar
  24. [Val07]
    B. Vallette, A Koszul duality for props. Trans. Am. Math. Soc. 359, 4865–4943 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  25. [Web07]
    M. Weber, Familial 2-functors and parametric right adjoints. Theory Appl. Categ. 18(22), 665–732 (2007)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Philip Hackney
    • 1
  • Marcy Robertson
    • 2
  • Donald Yau
    • 3
  1. 1.Stockholm UniversityStockholmSweden
  2. 2.University of CaliforniaLos AngelesUSA
  3. 3.Ohio State University, Newark CampusNewarkUSA

Personalised recommendations