Genetic Basis of Alcoholic and Nonalcoholic Fatty Liver Disease

  • Silvia SookoianEmail author
  • Carlos Jose Pirola


Nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) are both leading causes of nonviral chronic liver diseases, and the prevalence of these two clinical disorders is constantly growing worldwide.

NAFLD and AFLD share similar natural history, histologic features, and major molecular mechanisms, leading to inflammation and increased fibrogenesis. In this chapter, we revise current knowledge and recent insights regarding the genetic basis of NAFLD and AFLD in an integrative approach to understand the role of the genetic component in the susceptibility of abnormal liver fat accumulation and the progression of liver disease.


Nonalcoholic fatty liver NAFLD NASH Alcoholic fatty liver disease AFLD Gene Gene variants SNP PNPLA3 Genetics Metabolic syndrome Insulin resistance Systems biology 



Alcoholic fatty liver disease


Alanine aminotransferase


Gamma-glutamyl transpeptidase


Genome-wide association studies


Metabolic syndrome




Nonalcoholic fatty liver disease


Nonalcoholic steatohepatitis


Patatin-like phospholipase domain-containing protein 3


Single-nucleotide polymorphism




Funding Support

This study was supported partially by grants PICT 2010-0441 and PICT 2012-0159 (Agencia Nacional de Promoción Científica y Tecnológica) and UBACYT CM04 (Universidad de Buenos Aires).


  1. 1.
    Angulo P, Lindor KD. Non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2002;17(Suppl):S186–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–609.PubMedCrossRefGoogle Scholar
  3. 3.
    Schwartz JM, Reinus JF. Prevalence and natural history of alcoholic liver disease. Clin Liver Dis. 2012;16(4):659–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Sookoian S, Pirola CJ. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease. PLoS One. 2013;8(3):e58895.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Sookoian S, Pirola CJ. The genetic epidemiology of nonalcoholic fatty liver disease: toward a personalized medicine. Clin Liver Dis. 2012;16(3):467–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Stickel F, Hampe J. Genetic determinants of alcoholic liver disease. Gut. 2012;61(1):150–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):686–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Ludwig J, Viggiano TR, McGill DB, et al. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55(7):434–8.PubMedGoogle Scholar
  9. 9.
    Lieber CS, Schmid R. The effect of ethanol on fatty acid metabolism; stimulation of hepatic fatty acid synthesis in vitro. J Clin Invest. 1961;40:394–9.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Lieber CS, Jones DP, DeCarli LM. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J Clin Invest. 1965;44:1009–21.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kleiner DE, Brunt EM. Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis. 2012;32(1):3–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Lefkowitch JH. Morphology of alcoholic liver disease. Clin Liver Dis. 2005;9(1):37–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Sookoian S, Pirola CJ. NAFLD. Metabolic make-up of NASH: from fat and sugar to amino acids. Nat Rev Gastroenterol Hepatol. 2014;11(4):205–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Cotter DG, Ercal B, Huang X, et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Invest. 2014;124(12):5175–90.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Sunny NE, Parks EJ, Browning JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14(6):804–10.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    You M, Crabb DW. Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver. Am J Physiol Gastrointest Liver Physiol. 2004;287(1):G1–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sookoian S, Pirola CJ. PNPLA3, the triacylglycerol synthesis/hydrolysis/storage dilemma, and nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18(42):6018–26.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011;53(6):1883–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Tian C, Stokowski RP, Kershenobich D, et al. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet. 2010;42(1):21–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Trepo E, Gustot T, Degre D, et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol. 2011;55(4):906–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Stickel F, Buch S, Lau K, et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology. 2011;53(1):86–95.PubMedCrossRefGoogle Scholar
  23. 23.
    Valenti L, Rumi M, Galmozzi E, et al. Patatin-like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology. 2011;53(3):791–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Falleti E, Fabris C, Cmet S, et al. PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. Liver Int. 2011;31(8):1137–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Hassan MM, Kaseb A, Etzel CJ, et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog. 2013;52 Suppl 1:E139–47.PubMedCrossRefGoogle Scholar
  26. 26.
    Sookoian S, Pirola CJ. PNPLA3, the history of an orphan gene of the potato tuber protein family that found an organ: the liver. Hepatology. 2014;59(6):2068–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Jenkins CM, Mancuso DJ, Yan W, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem. 2004;279(47):48968–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Rae-Whitcombe SM, Kennedy D, Voyles M, et al. Regulation of the promoter region of the human adiponutrin/PNPLA3 gene by glucose and insulin. Biochem Biophys Res Commun. 2010;402(4):767–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Steinberg GR, Kemp BE, Watt MJ. Adipocyte triglyceride lipase expression in human obesity. Am J Physiol Endocrinol Metab. 2007;293(4):E958–64.PubMedCrossRefGoogle Scholar
  30. 30.
    Ruhanen H, Perttila J, Holtta-Vuori M, et al. PNPLA3 mediates hepatocyte triacylglycerol remodeling. J Lipid Res. 2014;55(4):739–46.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Min HK, Sookoian SC, Pirola CJ, et al. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells. Am J Physiol Gastrointest Liver Physiol. 2014;307(1):G66–76.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kumari M, Schoiswohl G, Chitraju C, et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 2012;15(5):691–702.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pingitore P, Pirazzi C, Mancina RM, et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta. 2014;1841(4):574–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Smagris E, BasuRay S, Li J, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015;61(1):108–18.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Chalasani N, Guo X, Loomba R, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. Gastroenterology. 2010;139(5):1567–76. 1576.e1–6.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Speliotes EK, Yerges-Armstrong LM, Wu J, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7(3):e1001324.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Feitosa MF, Wojczynski MK, North KE, et al. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis. 2013;228(1):175–80.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kawaguchi T, Sumida Y, Umemura A, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7(6):e38322.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kitamoto T, Kitamoto A, Yoneda M, et al. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet. 2013;132(7):783–92.PubMedCrossRefGoogle Scholar
  40. 40.
    DiStefano JK, Kingsley C, Craig WG, et al. Genome-wide analysis of hepatic lipid content in extreme obesity. Acta Diabetol. 2015;52(2):373–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Chambers JC, Zhang W, Sehmi J, et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011;43(11):1131–8.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Yuan X, Waterworth D, Perry JR, et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet. 2008;83(4):520–8.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Gorden A, Yang R, Yerges-Armstrong LM, et al. Genetic variation at NCAN locus is associated with inflammation and fibrosis in non-alcoholic fatty liver disease in morbid obesity. Hum Hered. 2013;75(1):34–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46(4):352–6.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Dongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology. 2015;61(2):506–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu YL, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:4309.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Sookoian S, Castano GO, Scian R, et al. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology. 2015;61(2):515–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang X, Liu Z, Peng Z, et al. The TM6SF2 rs58542926 T allele is significantly associated with nonalcoholic fatty liver disease in Chinese. J Hepatol. 2015;62(6):1438–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhou Y, Llaurado G, Oresic M, et al. Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2. J Hepatol. 2015;62(3):657–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Wong VW, Wong GL, Tse CH, et al. Prevalence of the TM6SF2 variant and non-alcoholic fatty liver disease in Chinese. J Hepatol. 2014;61(3):708–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Coppola N, Rosa Z, Cirillo G et al. TM6SF2 E167K variant is associated with severe steatosis in chronic hepatitis C, regardless of PNPLA3 polymorphism. Liver Int. 2015.Google Scholar
  52. 52.
    Mahdessian H, Taxiarchis A, Popov S, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A. 2014;111(24):8913–8.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Holmen OL, Zhang H, Fan Y, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet. 2014;46(4):345–51.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Struben VM, Hespenheide EE, Caldwell SH. Nonalcoholic steatohepatitis and cryptogenic cirrhosis within kindreds. Am J Med. 2000;108(1):9–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Schwimmer JB, Celedon MA, Lavine JE, et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology. 2009;136(5):1585–92.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Abdelmalek MF, Liu C, Shuster J, et al. Familial aggregation of insulin resistance in first-degree relatives of patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2006;4(9):1162–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Loomba R, Abraham M, Unalp A, et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology. 2012;56(3):943–51.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Loomba R, Rao F, Zhang L, et al. Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta2-adrenergic receptor genetic variation in twins. Gastroenterology. 2010;139(3):836–45. 845.e1.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Holmes RS. Alcohol dehydrogenases: a family of isozymes with differential functions. Alcohol Alcohol Suppl. 1994;2:127–30.PubMedGoogle Scholar
  60. 60.
    Crabb DW, Matsumoto M, Chang D, et al. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc. 2004;63(1):49–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Stickel F, Osterreicher CH. The role of genetic polymorphisms in alcoholic liver disease. Alcohol Alcohol. 2006;41(3):209–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Kwon HJ, Won YS, Park O, et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology. 2014;60(1):146–57.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Zeng T, Guo FF, Zhang CL, et al. Roles of cytochrome P4502E1 gene polymorphisms and the risks of alcoholic liver disease: a meta-analysis. PLoS One. 2013;8(1):e54188.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615–22.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Sookoian S, Garcia SI, Porto PI, et al. Peroxisome proliferator-activated receptor gamma and its coactivator-1 alpha may be associated with features of the metabolic syndrome in adolescents. J Mol Endocrinol. 2005;35(2):373–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Sookoian S, Rosselli MS, Gemma C, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52(6):1992–2000.PubMedCrossRefGoogle Scholar
  67. 67.
    Ahrens M, Ammerpohl O, von Schönfels W, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18(2):296–302.PubMedCrossRefGoogle Scholar
  68. 68.
    Murphy SK, Yang H, Moylan CA, et al. Relationship between methylome and transcriptome in patients with nonalcoholic Fatty liver disease. Gastroenterology. 2013;145(5):1076–87.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Pirola CJ, Gianotti TF, Burgueno AL, et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut. 2013;62(9):1356–63.PubMedCrossRefGoogle Scholar
  70. 70.
    Kharbanda KK, Todero SL, Thomes PG, et al. Increased methylation demand exacerbates ethanol-induced liver injury. Exp Mol Pathol. 2014;97(1):49–56.PubMedCrossRefGoogle Scholar
  71. 71.
    Park PH, Lim RW, Shukla SD. Involvement of histone acetyltransferase (HAT) in ethanol-induced acetylation of histone H3 in hepatocytes: potential mechanism for gene expression. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1124–36.PubMedCrossRefGoogle Scholar
  72. 72.
    Mandrekar P. Epigenetic regulation in alcoholic liver disease. World J Gastroenterol. 2011;17(20):2456–64.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    LIEBER CS, Leo MA, Wang X, et al. Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1alpha in rats. Biochem Biophys Res Commun. 2008;370(1):44–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Han D, Ybanez MD, Johnson HS, et al. Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice: biogenesis, remodeling, and functional alterations. J Biol Chem. 2012;287(50):42165–79.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Carabelli J, Burgueno AL, Rosselli MS, et al. High fat diet-induced liver steatosis promotes an increase in liver mitochondrial biogenesis in response to hypoxia. J Cell Mol Med. 2011;15(6):1329–38.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Pirola CJ, Gianotti TF, Castano GO, et al. Circulating MicroRNA-122 signature in nonalcoholic fatty liver disease and cardiovascular disease: a new endocrine system in metabolic syndrome. Hepatology. 2013;57(6):2545–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Bala S, Szabo G. MicroRNA signature in alcoholic liver disease. Int J Hepatol. 2012;2012:498232.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Pirola CJ, Fernandez GT, Castano GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64(5):800–12.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Sookoian S, Gianotti TF, Rosselli MS, et al. Liver transcriptional profile of atherosclerosis-related genes in human nonalcoholic fatty liver disease. Atherosclerosis. 2011;218(2):378–85.PubMedCrossRefGoogle Scholar
  80. 80.
    Sookoian S, Castano GO, Pirola CJ. Modest alcohol consumption decreases the risk of non-alcoholic fatty liver disease: a meta-analysis of 43 175 individuals. Gut. 2014;63(3):530–2.PubMedCrossRefGoogle Scholar
  81. 81.
    Takaki Y, Saito Y, Takasugi A, et al. Silencing of microRNA-122 is an early event during hepatocarcinogenesis from non-alcoholic steatohepatitis. Cancer Sci. 2014;105(10):1254–60.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;424:99–103.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang Y, Cheng X, Lu Z, et al. Upregulation of miR-15b in NAFLD models and in the serum of patients with fatty liver disease. Diabetes Res Clin Pract. 2013;99(3):327–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Castro RE, Ferreira DM, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58(1):119–25.PubMedCrossRefGoogle Scholar
  85. 85.
    Min HK, Kapoor A, Fuchs M, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012;15(5):665–74.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Estep M, Armistead D, Hossain N, et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2010;32(3):487–97.PubMedCrossRefGoogle Scholar
  87. 87.
    Cermelli S, Ruggieri A, Marrero JA, et al. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 2011;6(8):e23937.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48(6):1810–20.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Chen YP, Jin X, Xiang Z, et al. Circulating MicroRNAs as potential biomarkers for alcoholic steatohepatitis. Liver Int. 2013;33(8):1257–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Clinical and Molecular HepatologyInstitute of Medical Research A Lanari-IDIM, University of Buenos Aires—National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
  2. 2.Department of Molecular Genetics and Biology of Complex DiseasesInstitute of Medical Research A Lanari-IDIM, University of Buenos Aires—National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina

Personalised recommendations