Pathogenesis of Alcoholic Liver Disease

  • Gavin E. Arteel
  • David W. CrabbEmail author


Alcoholic liver disease (ALD) is a spectrum of injury to the liver that includes steatosis, inflammation, fibrosis, and cirrhosis. Hepatic steatosis is the first manifestation of excessive drinking and, while reversible, signifies the presence of ongoing metabolic stress on the liver which underlies the more serious stages of ALD. Lipid accumulation results from widespread disturbances in the handling of fat by the body (adipose dysfunction), increased de novo synthesis, and impaired fatty acid oxidation and export as VLDL. These metabolic disturbances are driven by oxidative and ER stress, generation of ceramide, abnormal homocysteine metabolism, activation of the innate immune response, and dysfunctional transcriptional control of lipid-metabolizing pathways. The alcoholic fatty liver probably is always mildly inflamed and sensitive to necrosis, apoptosis, and necroptosis when additional stresses are imposed. The most important of these is the exposure to abnormal levels of lipopolysaccharide reaching the liver from an abnormally permeably gut. Inflammation involves particularly innate immune mechanisms, in particular the release of TNFα by the Kupffer cells, and is a prime driver of fibrosis mediated by hepatic stellate cells (HSC). Unconventional contributors to ALD include the complement system, coagulation pathway, and osteopontin. Improved therapies will need to take into consideration the numerous metabolic and signaling pathways deranged in heavy drinkers.


Steatosis Inflammation Fibrosis Oxidative stress Cytokines Lipopolysaccharide Innate immunity Apoptosis Necroptosis 



Supported in part by grants P60 AA07611, U01 AA021883, and U01 AA021840 (D.W.C.) and R01 AA021978 (G.E.A.).


  1. 1.
    Rubin E, Lieber CS. Experimental alcoholic hepatitis: a new primate model. Science. 1973;182:712–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Jinjuvadia R, Liangpunsakul S (2014) Trends in alcoholic hepatitis-related hospitalizations, financial burden, and mortality in the United States. J Clin Gastroenterol. J CLin Gastroenerol 2015;49:506–11.Google Scholar
  3. 3.
    Yokoyama A, Mizukami T, Matsui T, et al. Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and liver cirrhosis, chronic calcific pancreatitis, diabetes mellitus, and hypertension among Japanese alcoholic men. Alcohol Clin Exp Res. 2013;37:1391–401.PubMedCrossRefGoogle Scholar
  4. 4.
    Li D, Zhao H, Gelernter J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum Genet. 2012;131:725–37.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Yokoyama A, Mizukami T, Yokoyama T. Genetic polymorphisms of alcohol dehydrogense-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers. Adv Exp Med Biol. 2015;815:265–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Best CH, Hartroft WS, Lucas CC, et al. Liver damage produced by feeding alcohol or sugar and its prevention by choline. Br Med J. 1949;2:1001–6.PubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lieber CS, Rubin E. Ethanol – a hepatotoxic drug. Gastroenterology. 1968;54:642–6.PubMedGoogle Scholar
  8. 8.
    Kalish GH, Di Luzio NR. Peroxidation of liver lipids in the pathogenesis of the ethanol-induced fatty liver. Science. 1966;152:1390–2.PubMedCrossRefGoogle Scholar
  9. 9.
    McCord JM, Fridovich I. Superoxide dismutase: an enzymatic function of erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.PubMedGoogle Scholar
  10. 10.
    Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134:707–16.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bailey SM, Pietsch EC, Cunningham CC. Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III. Free Radic Biol Med. 1999;27:891–900.PubMedCrossRefGoogle Scholar
  12. 12.
    Cunningham CC, Bailey SM. Ethanol consumption and liver mitochondria function. Biol Signals Recept. 2001;10:271–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Fernandez-Checa JC, Colell A, Garcia-Ruiz C. S-Adenosyl-L-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease. Alcohol. 2002;27:179–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Ekstrom G, Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Biochem Pharmacol. 1989;38:1313–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Cao Q, Mak KM, Lieber CS. Cytochrome P4502E1 primes macrophages to increase TNF-alpha production in response to lipopolysaccharide. Am J Physiol Gastrointest Liver Physiol. 2005;289:G95–107.PubMedCrossRefGoogle Scholar
  16. 16.
    Lieber CS. Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta. 1997;257:59–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaphalia L, Calhoun WJ. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol Lett. 2013;222:171–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Niemela O. Distribution of ethanol-induced protein adducts in vivo: relationship to tissue injury. Free Radic Biol Med. 2001;31:1533–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Worrall S, Thiele GM. Protein modification in ethanol toxicity. Adverse Drug React Toxicol Rev. 2001;20:133–59.PubMedGoogle Scholar
  20. 20.
    Laposata EA, Lange LG. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science. 1986;231:497–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Beckemeier ME, Bora PS. Fatty acid ethyl esters: potentially toxic products of myocardial ethanol metabolism. J Mol Cell Cardiol. 1998;30:2487–94.PubMedCrossRefGoogle Scholar
  22. 22.
    McKim SE, Gabele E, Isayama F, et al. Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice. Gastroenterology. 2003;125:1834–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Klebanoff SJ. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 1968;95:2131–8.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620–4.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med. 2000;21:49–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Paik YH, Kim J, Aoyama T, et al. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal. 2014;20:2854–72.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Nordmann R, Ribiere C, Rouach H. Ethanol-induced lipid peroxidation and oxidative stress in extrahepatic tissues. Alcohol Alcohol. 1990;25:231–7.PubMedGoogle Scholar
  29. 29.
    Kono H, Rusyn I, Bradford BU, et al. Allopurinol prevents early alcohol-induced liver injury in rats. J Pharmnacol Exp Ther. 2000;293:296–303.Google Scholar
  30. 30.
    Bujanda L. The effects of alcohol consumption upon the gastrointestinal tract. Am J Gastroenterol. 2000;95:3374–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Patek AJ. Alcohol, malnutrition, and alcoholic cirrhosis. Am J Clin Nutr. 1979;32:1304–12.PubMedGoogle Scholar
  32. 32.
    Bardag-Gorce F, Yuan QX, Li J, et al. The effect of ethanol-induced cytochrome p4502E1 on the inhibition of proteasome activity by alcohol. Biochem Biophys Res Commun. 2000;279:23–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Dolganiuc A, Thomes PG, Ding WX, et al. Autophagy in alcohol-induced liver diseases. Alcohol Clin Exp Res. 2012;36:1301–8.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med. 2013;63:207–21.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Lieber CS, DeCarli LM. Quantitative relationship between amount of dietary fat and severity of alcoholic fatty liver. Am J Clin Nutr. 1970;23:474–8.PubMedGoogle Scholar
  36. 36.
    Mezey E. Dietary fat and alcoholic liver disease. Hepatology. 1998;28:901–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Nanji AA. Role of different dietary fatty acids in the pathogenesis of experimental alcoholic liver disease. Alcohol. 2004;34:21–5.PubMedCrossRefGoogle Scholar
  38. 38.
    You M, Considine RV, Leone TC, et al. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology. 2005;42:568–77.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Addolorato G, Capristo E, Greco AV, et al. Influence of chronic alcohol abuse on body weight and energy metabolism: is excess ethanol consumption a risk factor for obesity or malnutrition? J Intern Med. 1998;244:387–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Addolorato G, Capristo E, Greco AV, et al. Three months of abstinence from alcohol normalized energy expenditure and substrate oxidation in alcoholics: a longitudinal study. Am J Gastroenterol. 1998;93:2476–81.PubMedCrossRefGoogle Scholar
  41. 41.
    Addolorato G, Capristo E, Marini M, et al. Body composition changes induced by chronic ethanol abuse: evaluation by dual energy X-ray absorptiometry. Am J Gastroenterol. 2000;95:2323–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Liangpunsakul S, Crabb DW, Qi R. Relationship among alcohol intake, body fat, and physical activity: a population-based study. Ann Epidemiol. 2010;20:670–5.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Contaldo F, D’Arrigo E, Carandente V, et al. Short-term effects of moderate alcohol consumption on lipoid metabolism and energy balance in normal men. Metabolism. 1989;38:166–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Scheig R, Alexander NM, Klatskin G. Effects of prolonged ingestion of glucose or ethanol on tissue lipid composition and lipid biosynthesis in rat. J Lipid Res. 1966;7:188–96.PubMedGoogle Scholar
  45. 45.
    Yoshinari K, Sato T, Okino N, et al. Expression and induction of cytochromes p450 in rat white adipose tissue. J Pharmacol Exp Ther. 2004;311:147–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Sebastian BM, Nagy LE. Decreased insulin-dependent glucose transport by chronic ethanol feeding is associated with dysregulation of the Cbl/TC10 pathway in rat adipocytes. Am J Physiol Endocrinol Metab. 2005;289:E1077–84.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Song Z, Zhou Z, Deaciuc I, et al. Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease. Hepatology. 2008;47:867–79.PubMedCrossRefGoogle Scholar
  48. 48.
    You M, Rogers CQ. Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med (Maywood). 2009;234:850–9.CrossRefGoogle Scholar
  49. 49.
    Sun X, Tang Y, Tan X, et al. Activation of peroxisome proliferator-activated receptor-? By rosiglitazone improves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G548–57.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Shen Z, Liang X, Rogers CQ, et al. Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol. 2010;298(3):G364–74.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lavoie JM, Gauthier MS. Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise. Cell Mol Life Sci. 2006;63:1393–409.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou J, Febbraio M, Wada T, et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology. 2008;134:556–67.PubMedCrossRefGoogle Scholar
  53. 53.
    Doege H, Baillie RA, Ortegon AM, et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology. 2006;130:1245–58.PubMedCrossRefGoogle Scholar
  54. 54.
    Newberry EP, Xie Y, Kennedy S, et al. Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J Biol Chem. 2003;278:51664–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Newberry EP, Xie Y, Kennedy SM, et al. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology. 2006;44:1191–205.PubMedCrossRefGoogle Scholar
  56. 56.
    Clugston RD, Yuen JJ, Hu Y, et al. CD36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis. J Lipid Res. 2014;55:239–46.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Ronis MJ, Hennings L, Stewart B, et al. Effects of long-term ethanol administration in a rat total enteral nutrition model of alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2011;300:G109–19.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Xu A, Wang Y, Keshaw H, et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112:91–100.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Towle HC, Kaytor EN, Shih HM. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr. 1997;17:405–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J. 2002;366(Pt 2):377–91.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Postic C, Girard J. The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab. 2008;34(6 Pt 2):643–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Shimano H, Horton JD, Hammer RE, et al. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest. 1996;98:1575–84.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    You M, Fischer M, Deeg MA, et al. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem. 2002;277:29342–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J Hepatol. 2006;45:717–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology. 2003;124:1488–99.PubMedCrossRefGoogle Scholar
  66. 66.
    Coll O, Colell A, Garcia-Ruiz C, et al. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology. 2003;38:692–702.PubMedCrossRefGoogle Scholar
  67. 67.
    Ji C. Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury. J Gastroenterol Hepatol. 2008;23 Suppl 1:S16–24.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Barak AJ, Beckenhauer HC, Junnila M, et al. Dietary betaine promotes generation of hepatic S-adenosylmethionine and protects the liver from ethanol-induced fatty infiltration. Alcohol Clin Exp Res. 1993;17:552–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Halsted CH, Villanueva J, Chandler CJ, et al. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology. 1996;23:497–505.PubMedCrossRefGoogle Scholar
  70. 70.
    Trimble KC, Molloy AM, Scott JM, et al. The effect of ethanol on one-carbon metabolism: increased methionine catabolism and lipotrope methyl-group wastage. Hepatology. 1993;18:984–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Villanueva JA, Halsted CH. Hepatic transmethylation reactions in micropigs with alcoholic liver disease. Hepatology. 2004;39:1303–10.PubMedCrossRefGoogle Scholar
  72. 72.
    Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology. 2004;40:442–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Esfandiari F, Villanueva JA, Wong DH, et al. Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am J Physiol Gastrointest Liver Physiol. 2005;289:G54–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Esfandiari F, You M, Villanueva JA, et al. S-adenosylmethionine attenuates hepatic lipid synthesis in micropigs fed ethanol with a folate-deficient diet. Alcohol Clin Exp Res. 2007;31:1231–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Endo M, Masaki T, Seike M, et al. TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood). 2007;232:614–21.Google Scholar
  76. 76.
    Bala S, Marcos M, Gattu A, et al. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS One. 2014;9, e96864.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Yin HQ, Kim M, Kim JH, et al. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice. Toxicol Appl Pharmacol. 2007;223:225–33.PubMedCrossRefGoogle Scholar
  78. 78.
    You M, Matsumoto M, Pacold CM, et al. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology. 2004;127:1798–808.PubMedCrossRefGoogle Scholar
  79. 79.
    Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 2006;4:107–10.PubMedCrossRefGoogle Scholar
  80. 80.
    Ishii S, Iizuka K, Miller BC, et al. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci USA. 2004;101:15597–602.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Kawaguchi T, Takenoshita M, Kabashima T, et al. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci USA. 2001;98:13710–5.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Kabashima T, Kawaguchi T, Wadzinski BE, et al. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA. 2003;100:5107–12.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Ji C, Shinohara M, Vance D, et al. Effect of transgenic extrahepatic expression of betaine-homocysteine methyltransferase on alcohol or homocysteine-induced fatty liver. Alcohol Clin Exp Res. 2008;32:1049–58.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Liangpunsakul S, Ross RA, Crabb DW. Activation of carbohydrate response element-binding protein by ethanol. J Investig Med. 2013;61:270–7.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Gyamfi MA, Wan YJ. Pathogenesis of alcoholic liver disease: the role of nuclear receptors. Exp Biol Med (Maywood). 2010;235:547–60.CrossRefGoogle Scholar
  86. 86.
    Mitro N, Mak PA, Vargas L, et al. The nuclear receptor LXR is a glucose sensor. Nature. 2007;445:219–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Lehmann JM, Kliewer SA, Moore LB, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 1997;272:3137–40.PubMedCrossRefGoogle Scholar
  88. 88.
    Janowski BA, Grogan MJ, Jones SA, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA. 1999;96:266–71.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Janowski BA, Willy PJ, Devi TR, et al. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383:728–31.PubMedCrossRefGoogle Scholar
  90. 90.
    Joseph SB, Laffitte BA, Patel PH, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 2002;277:11019–25.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang Y, Yin L, Hillgartner FB. SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes. J Lipid Res. 2003;44:356–68.PubMedCrossRefGoogle Scholar
  92. 92.
    Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem. 2007;282:743–51.PubMedCrossRefGoogle Scholar
  93. 93.
    Yoshikawa T, Ide T, Shimano H, et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) {alpha} and Liver X Receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol. 2003;17:1240–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Wu W, Zhu B, Peng X, et al. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem Biophys Res Commun. 2014;443:68–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Lívero FA, Stolf AM, Dreifuss AA, et al. The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and low-protein diet in mice. Chem Biol Interact. 2014;217:19–27.PubMedCrossRefGoogle Scholar
  96. 96.
    Fernandez A, Matias N, Fucho R, et al. ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. J Hepatol. 2013;59:805–13.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Tam J, Liu J, Mukhopadhyay B, et al. Endocannabinoids in liver disease. Hepatology. 2011;53:346–55.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Jeong WI, Osei-Hyiaman D, Park O, et al. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab. 2008;7:227–35.PubMedCrossRefGoogle Scholar
  99. 99.
    Wu HM, Yang YM, Kim SG. Rimonabant, a cannabinoid receptor type 1 inverse agonist, inhibits hepatocyte lipogenesis by activating liver kinase B1 and AMP-activated protein kinase axis downstream of G? i/o inhibition. Mol Pharmacol. 2011;80:859–69.PubMedCrossRefGoogle Scholar
  100. 100.
    Dobrzyn P, Dobrzyn A, Miyazaki M, et al. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci USA. 2004;101:6409–14.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 2002;30(Pt 6):1064–70.PubMedCrossRefGoogle Scholar
  102. 102.
    Muoio DM, Seefeld K, Witters LA, et al. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J. 1999;338(Pt 3):783–91.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Kawaguchi T, Osatomi K, Yamashita H, et al. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem. 2002;277:3829–35.PubMedCrossRefGoogle Scholar
  104. 104.
    Garcia-Villafranca J, Guillen A, Castro J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie. 2008;90:460–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signaling. Biochem J. 2001;353:417–39.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Liangpunsakul S, Sozio MS, Shin E, et al. Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels. Am J Physiol Gastrointest Liver Physiol. 2010;298:G1004–12.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Wu Y, Song P, Xu J, et al. Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem. 2007;282:9777–88.PubMedCrossRefGoogle Scholar
  108. 108.
    Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem J. 1998;335(Pt 3):465–80.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Liangpunsakul S, Rahmini Y, Ross RA, et al. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G515–23.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Tong M, Longato L, Ramirez T, et al. Therapeutic reversal of chronic alcohol-related steatohepatitis with the ceramide inhibitor myriocin. Int J Exp Pathol. 2014;95:49–63.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Ajmo JM, Liang X, Rogers CQ, et al. Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol. 2008;295:G833–42.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Correnti JM, Juskeviciute E, Swarup A, et al. Pharmacological ceramide reduction alleviates alcohol-induced steatosis and hepatomegaly in adiponectin knockout mice. Am J Physiol Gastrointest Liver Physiol. 2014;306:G959–73.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283:20015–26.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Yin H, Hu M, Liang X, et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 2014;146:801–11.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    You M, Cao Q, Liang X, et al. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice. J Nutr. 2008;138:497–501.PubMedGoogle Scholar
  116. 116.
    You M, Liang X, Ajmo JM, et al. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol. 2008;294:G892–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Lieber CS, Leo MA, Wang X, et al. Effect of chronic alcohol consumption on hepatic SIRT1 and PGC-1alpha in rats. Biochem Biophys Res Commun. 2008;370:44–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Yin H, Hu M, Zhang R, et al. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem. 2012;287:9817–26.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Hu M, Wang F, Li X, et al. Regulation of hepatic lipin-1 by ethanol: role of AMP-activated protein kinase/sterol regulatory element-binding protein 1 signaling in mice. Hepatology. 2012;55:437–46.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Shen Z, Ajmo JM, Rogers CQ, et al. Role of SIRT1 in regulation of LPS- or two ethanol metabolites-induced TNF-alpha production in cultured macrophage cell lines. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1047–53.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Galli A, Pinaire J, Fischer M, et al. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem. 2001;276:68–75.PubMedCrossRefGoogle Scholar
  122. 122.
    Nakajima T, Kamijo Y, Tanaka N, et al. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology. 2004;40:972–80.PubMedCrossRefGoogle Scholar
  123. 123.
    Nanji AA, Dannenberg AJ, Jokelainen K, et al. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther. 2004;310:417–24.PubMedCrossRefGoogle Scholar
  124. 124.
    Fischer M, You M, Matsumoto M, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J Biol Chem. 2003;278:27997–8004.PubMedCrossRefGoogle Scholar
  125. 125.
    Bronner M, Hertz R, Bar-Tana J. Kinase-independent transcriptional co-activation of peroxisome proliferator-activated receptor alpha by AMP-activated protein kinase. Biochem J. 2004;384(Pt 2):295–305.PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Aatsinki SM, Buler M, Salomäki H, et al. Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions. Br J Pharmacol. 2014;171:2351–63.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Wada S, Yamazaki T, Kawano Y, et al. Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice. J Hepatol. 2008;49:441–50.PubMedCrossRefGoogle Scholar
  128. 128.
    Enomoto N, Takei Y, Hirose M, et al. Prevention of ethanol-induced liver injury in rats by an agonist of peroxisome proliferator-activated receptor-gamma, pioglitazone. J Pharmacol Exp Ther. 2003;306:846–54.PubMedCrossRefGoogle Scholar
  129. 129.
    LeBrasseur NK, Kelly M, Tsao TS, et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab. 2006;291:E175–81.PubMedCrossRefGoogle Scholar
  130. 130.
    Tomita K, Azuma T, Kitamura N, et al. Pioglitazone prevents alcohol-induced fatty liver in rats through up-regulation of c-Met. Gastroenterology. 2004;126:873–85.PubMedCrossRefGoogle Scholar
  131. 131.
    Qin X, Xie X, Fan Y, et al. Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology. 2008;48:432–41.PubMedCrossRefGoogle Scholar
  132. 132.
    Goudarzi M, Koga T, Khozoie C, et al. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity. Toxicology. 2013;311:87–98.PubMedCrossRefGoogle Scholar
  133. 133.
    Pang M, de la Monte SM, Longato L, et al. PPARdelta agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair. J Hepatol. 2009;50:1192–201.PubMedCentralPubMedCrossRefGoogle Scholar
  134. 134.
    Ramirez T, Tong M, Chen WC, et al. Chronic alcohol-induced hepatic insulin resistance and endoplasmic reticulum stress ameliorated by peroxisome-proliferator activated receptor-δ agonist treatment. J Gastroenterol Hepatol. 2013;28:179–87.PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    de la Monte SM, Pang M, Chaudhry R, et al. Peroxisome proliferator-activated receptor agonist treatment of alcohol-induced hepatic insulin resistance. Hepatol Res. 2011;41:386–98.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Ding WX, Li M, Chen X, et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology. 2010;139:1740–52.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Donohue Jr TM, Thomes PG. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity. Redox Biol. 2014;3C:29–39.CrossRefGoogle Scholar
  138. 138.
    Noga AA, Zhao Y, Vance DE. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem. 2002;277:42358–65.PubMedCrossRefGoogle Scholar
  139. 139.
    Nishimaki-Mogami T, Suzuki K, Takahashi A. The role of phosphatidylethanolamine methylation in the secretion of very low density lipoproteins by cultured rat hepatocytes: rapid inhibition of phosphatidylethanolamine methylation by bezafibrate increases the density of apolipoprotein B48-containing lipoproteins. Biochim Biophys Acta. 1996;1304:21–31.PubMedCrossRefGoogle Scholar
  140. 140.
    Kharbanda KK, Mailliard ME, Baldwin CR, et al. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway. J Hepatol. 2007;46:314–21.PubMedCrossRefGoogle Scholar
  141. 141.
    Kharbanda KK, Rogers DD, Mailliard ME, et al. A comparison of the effects of betaine and S-adenosylmethionine on ethanol-induced changes in methionine metabolism and steatosis in rat hepatocytes. J Nutr. 2005;135:519–24.PubMedGoogle Scholar
  142. 142.
    Sparks JD, Collins HL, Chirieac DV, et al. Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase. Biochem J. 2006;395:363–71.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Ameen C, Edvardsson U, Ljungberg A, et al. Activation of peroxisome proliferator-activated receptor alpha increases the expression and activity of microsomal triglyceride transfer protein in the liver. J Biol Chem. 2005;280:1224–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Sugimoto T, Yamashita S, Ishigami M, et al. Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats. J Hepatol. 2002;36:157–62.PubMedCrossRefGoogle Scholar
  145. 145.
    Tahara M, Matsumoto K, Nukiwa T, et al. Hepatocyte growth factor leads to recovery from alcohol-induced fatty liver in rats. J Clin Invest. 1999;103:313–20.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Petrasek J, Csak T, Szabo G. Toll-like receptors in liver disease. Adv Clin Chem. 2013;59:155–201.PubMedCrossRefGoogle Scholar
  147. 147.
    Pavlov M. The anti-toxic function of the liver. Lancet. 1893;2:1092.Google Scholar
  148. 148.
    Fox ES, Thomas P, Broitman SA. Comparative studies of endotoxin uptake by isolated rat Kupffer and peritoneal cells. Infect Immun. 1987;55:2962–6.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Nolan JP. Endotoxin, reticuloendothelial function, and liver injury. Hepatology. 1981;1:458–65.PubMedCrossRefGoogle Scholar
  150. 150.
    Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol. 2003;17:575–92.PubMedCrossRefGoogle Scholar
  151. 151.
    Nolan JP. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology. 2010;52:1829–35.PubMedCrossRefGoogle Scholar
  152. 152.
    Rutenburg AM, Sonnenblick E, Koven I, et al. The role of intestinal bacteria in the development of dietary cirrhosis in rats. J Exp Med. 1957;106:1–14.PubMedCentralPubMedCrossRefGoogle Scholar
  153. 153.
    Nanji AA, Khettry U, Sadrzadeh SMH. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver disease. Proc Soc Exp Biol Med. 1994;205:243–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Chen P, Schnabl B. Host-microbiome interactions in alcoholic liver disease. Gut Liver. 2014;8:237–41.PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology. 2015;148:30–6.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kono H, Enomoto N, Connor HD, et al. Medium-chain triglycerides inhibit free radical formation and TNF-alpha production by isolated Kupffer cells in rats given enteral ethanol. Am J Physiol. 1999;278:G467–76.Google Scholar
  157. 157.
    Yin M, Wheeler MD, Kono H, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury. Gastroenterology. 1999;117:942–52.PubMedCrossRefGoogle Scholar
  158. 158.
    Chen P, Starkel P, Turner JR, et al. Dysbiosis-induced intestinal inflammation activates TNFRI and mediates alcoholic liver disease in mice. Hepatology. 2015;61(3):883–94. doi: 10.1002/hep.27489.PubMedCrossRefGoogle Scholar
  159. 159.
    Chen P, Torralba M, Tan J, et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology. 2015;148:203–14.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Bode JC. Alcohol and the gastrointestinal tract. Ergeb Inn Med Kinderheilkd. 1980;45:1–75.PubMedGoogle Scholar
  161. 161.
    Keshavarzian A, Holmes EW, Patel M, et al. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol. 1999;94:200–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Wang Y, Liu Y, Sidhu A, et al. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol. 2012;303:G32–41.PubMedCentralPubMedCrossRefGoogle Scholar
  163. 163.
    Kirpich IA, Feng W, Wang Y, et al. Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol. Alcohol. 2013;47:257–64.PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Spencer S, Rubin KP, Lieber CS. Depressed hepatic glutathione and increased diene conjugates in alcoholic liver disease: evidence of lipid peroxidation. Dig Dis Sci. 1983;28:585–9.CrossRefGoogle Scholar
  165. 165.
    Bigatello LM, Broitman SA, Fattori L, et al. Endotoxemia, encephalopathy, and mortality in cirrhotic patients. Am J Gastroenterol. 1987;82:11–5.PubMedGoogle Scholar
  166. 166.
    Deaciuc IV, Fortunato F, D'Souza NB, et al. Modulation of caspase-3 activity and Fas ligand mRNA expression in rat liver cells in vivo by alcohol and lipopolysaccharide. Alcohol Clin Exp Res. 1999;23:349–56.PubMedCrossRefGoogle Scholar
  167. 167.
    McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology. 1989;9:349–51.PubMedCrossRefGoogle Scholar
  168. 168.
    Colell A, Garcia-Ruiz C, Miranda M, et al. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor. Gastroenterology. 1998;115:1541–51.PubMedCrossRefGoogle Scholar
  169. 169.
    Liu H, Jones BE, Bradham C, et al. Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-alpha. Am J Physiol Gastrointest Liver Physiol. 2002;282:G257–66.PubMedCrossRefGoogle Scholar
  170. 170.
    Reeves HL, Dack CL, Peak M, et al. Stress-activated protein kinases in the activation of rat hepatic stellate cells in culture. J Hepatol. 2000;32:465–72.PubMedCrossRefGoogle Scholar
  171. 171.
    Kim KY, Rhim T, Choi I, et al. N-Acetylcysteine induces cell cycle arrest in hepatic stellate cells through its reducing activity. J Biol Chem. 2001;276:40591–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Adachi Y, Bradford BU, Gao W, et al. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology. 1994;20:453–60.PubMedCrossRefGoogle Scholar
  173. 173.
    Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest. 2000;106:867–72.PubMedCentralPubMedCrossRefGoogle Scholar
  174. 174.
    Wheeler MD, Thurman RG. Up-regulation of CD14 in liver caused by acute ethanol involves oxidant-dependent AP-1 pathway. J Biol Chem. 2003;278:8435–41.PubMedCrossRefGoogle Scholar
  175. 175.
    Hill DB, Devalaraja R, Joshi-Barve S, et al. Antioxidants attenuate nuclear factor-kappa B activation and tumor necrosis factor-alpha production in alcoholic hepatitis patient monocytes and rat Kupffer cells in vitro. Clin Biochem. 1999;32:563–70.PubMedCrossRefGoogle Scholar
  176. 176.
    Roman J, Colell A, Blasco C, et al. Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB. Hepatology. 1999;30:1473–80.PubMedCrossRefGoogle Scholar
  177. 177.
    Nagy LE. Molecular aspects of alcohol metabolism: transcription factors involved in early ethanol-induced liver injury. Annu Rev Nutr. 2004;24:55–78.PubMedCrossRefGoogle Scholar
  178. 178.
    Hritz I, Mandrekar P, Velayudham A, et al. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology. 2008;48:1224–31.PubMedCrossRefGoogle Scholar
  179. 179.
    Nagy LE. Stabilization of tumor necrosis factor-alpha mRNA in macrophages in response to chronic ethanol exposure. Alcohol. 2004;33:229–33.PubMedCrossRefGoogle Scholar
  180. 180.
    Lu Y, Cederbaum AI. CYP2E1 potentiation of LPS and TNFα-induced hepatotoxicity by mechanisms involving enhanced oxidative and nitrosative stress, activation of MAP kinases, and mitochondrial dysfunction. Genes Nutr. 2010;5:149–67.PubMedCentralPubMedCrossRefGoogle Scholar
  181. 181.
    Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal. 2009;11:2245–63.PubMedCentralPubMedCrossRefGoogle Scholar
  182. 182.
    McDaniel K, Herrera L, Zhou T, et al. The functional role of microRNAs in alcoholic liver injury. J Cell Mol Med. 2014;18:197–207.PubMedCentralPubMedCrossRefGoogle Scholar
  183. 183.
    Francis H, McDaniel K, Han Y, et al. Regulation of the extrinsic apoptotic pathway by microRNA-21 in alcoholic liver injury. J Biol Chem. 2014;289:27526–39.PubMedCentralPubMedCrossRefGoogle Scholar
  184. 184.
    Roychowdhury S, Chiang DJ, Mandal P, et al. Inhibition of apoptosis protects mice from ethanol-mediated acceleration of early markers of CCl4-induced fibrosis but not steatosis or inflammation. Alcohol Clin Exp Res. 2012;36:1139–47.PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    Petrasek J, Iracheta-Vellve A, Csak T, et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad Sci USA. 2013;110:16544–9.PubMedCentralPubMedCrossRefGoogle Scholar
  186. 186.
    Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology. 2006;43:S31–44.PubMedCrossRefGoogle Scholar
  187. 187.
    Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology. 2014;147:765–83.PubMedCentralPubMedCrossRefGoogle Scholar
  188. 188.
    Szabo G, Csak T. Inflammasomes in liver disease. J Hepatol. 2012;57:642–54.PubMedCrossRefGoogle Scholar
  189. 189.
    Guiccardi ME, Gores GJ. Apoptosis as a mechanism for liver disease progression. Semin Liver Dis. 2010;30:402–10.CrossRefGoogle Scholar
  190. 190.
    Masyuk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59:621–5.PubMedCrossRefGoogle Scholar
  191. 191.
    Kruithof EK. Plasminogen activator inhibitors – a review. Enzyme. 1988;40:113–21.PubMedGoogle Scholar
  192. 192.
    Bergheim I, Guo L, Davis MA, et al. Metformin prevents alcohol-induced liver injury in the mouse: critical role of plasminogen activator inhibitor-1. Gastroenterology. 2006;130:2099–112.PubMedCentralPubMedCrossRefGoogle Scholar
  193. 193.
    Naldini L, Vigna E, Bardelli A, et al. Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem. 1995;270(2):603–11.PubMedCrossRefGoogle Scholar
  194. 194.
    Taniyama Y, Morishita R, Nakagami H, et al. Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation. 2000;102:246–52.PubMedCrossRefGoogle Scholar
  195. 195.
    Kaibori M, Kwon AH, Oda M, et al. Hepatocyte growth factor stimulates synthesis of lipids and secretion of lipoproteins in rat hepatocytes. Hepatology. 1998;27:1354–61.PubMedCrossRefGoogle Scholar
  196. 196.
    Sato Y, Tsuboi R, Lyons R, et al. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J Cell Biol. 1990;111:757–63.PubMedCrossRefGoogle Scholar
  197. 197.
    Espevik T, Figari IS, Shalaby MR, et al. Inhibition of cytokine production by cyclosporin A and transforming growth factor beta. J Exp Med. 1987;166:571–6.PubMedCrossRefGoogle Scholar
  198. 198.
    Deng X, Luyendyk JP, Zou W, et al. Neutrophil interaction with the hemostatic system contributes to liver injury in rats cotreated with lipopolysaccharide and ranitidine. J Pharmacol Exp Ther. 2007;322:852–61.PubMedCrossRefGoogle Scholar
  199. 199.
    Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3:1473–92.PubMedCrossRefGoogle Scholar
  200. 200.
    Gillis SE, Nagy LE. Deposition of cellular fibronectin increases before stellate cell activation in rat liver during ethanol feeding. Alcohol Clin Exp Res. 1997;21:857–61.PubMedCrossRefGoogle Scholar
  201. 201.
    Thiele GM, Duryee MJ, Freeman TL, et al. Rat sinusoidal liver endothelial cells (SECs) produce pro-fibrotic factors in response to adducts formed from the metabolites of ethanol. Biochem Pharmacol. 2005;70:1593–600.PubMedCrossRefGoogle Scholar
  202. 202.
    Gressner AM, Gao CF, Gressner OA. Non-invasive biomarkers for monitoring the fibrogenic process in liver: a short survey. World J Gastroenterol. 2009;15:2433–40.PubMedCentralPubMedCrossRefGoogle Scholar
  203. 203.
    Liotta LA, Goldfarb RH, Brundage R, et al. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981;41(11 Pt 1):4629–36.PubMedGoogle Scholar
  204. 204.
    Mackay AR, Corbitt RH, Hartzler JL, et al. Basement membrane type IV collagen degradation: evidence for the involvement of a proteolytic cascade independent of metalloproteinases. Cancer Res. 1990;50:5997–6001.PubMedGoogle Scholar
  205. 205.
    Mochan E, Keler T. Plasmin degradation of cartilage proteoglycan. Biochim Biophys Acta. 1984;800:312–5.PubMedCrossRefGoogle Scholar
  206. 206.
    Ramos-DeSimone N, Hahn-Dantona E, Sipley J, et al. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999;274:13066–76.PubMedCrossRefGoogle Scholar
  207. 207.
    Hattori N, Degen JL, Sisson TH, et al. Bleomycin-induced pulmonary fibrosis in fibrinogen-null mice. J Clin Invest. 2000;106:1341–50.PubMedCentralPubMedCrossRefGoogle Scholar
  208. 208.
    Huang Y, Haraguchi M, Lawrence DA, et al. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest. 2003;112:379–88.PubMedCentralPubMedCrossRefGoogle Scholar
  209. 209.
    Kaikita K, Fogo AB, Ma L, et al. Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation. 2001;104:839–44.PubMedCrossRefGoogle Scholar
  210. 210.
    Bergheim I, Guo L, Davis MA, et al. Critical role of plasminogen activator inhibitor-1 in cholestatic liver injury and fibrosis. J Pharmacol Exp Ther. 2006;316:592–600.PubMedCrossRefGoogle Scholar
  211. 211.
    Wang H, Zhang Y, Heuckeroth RO. PAI-1 deficiency reduces liver fibrosis after bile duct ligation in mice through activation of tPA. FEBS Lett. 2007;581:3098–104.PubMedCrossRefGoogle Scholar
  212. 212.
    Beier JI, Kaiser JP, Guo L, et al. Plasminogen activator inhibitor-1 deficient mice are protected from angiotensin II-induced fibrosis. Arch Biochem Biophys. 2011;510:19–26.PubMedCentralPubMedCrossRefGoogle Scholar
  213. 213.
    von Montfort C, Beier JI, Kaiser JP, et al. PAI-1 plays a protective role in CCl4-induced hepatic fibrosis in mice: role of hepatocyte division. Am J Physiol Gastrointest Liver Physiol. 2010;298:G657–66.CrossRefGoogle Scholar
  214. 214.
    Bajt ML, Yan HM, Farhood A, et al. Plasminogen activator inhibitor-1 limits liver injury and facilitates regeneration after acetaminophen overdose. Toxicol Sci. 2008;104:419–27.PubMedCentralPubMedCrossRefGoogle Scholar
  215. 215.
    Qin X, Gao B. The complement system in liver diseases. Cell Mol Immunol. 2006;3:333–40.PubMedGoogle Scholar
  216. 216.
    Pritchard MT, McMullen MR, Stavitsky AB, et al. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology. 2007;132:1117–26.PubMedCentralPubMedCrossRefGoogle Scholar
  217. 217.
    Cohen JI, Roychowdhury S, McMullen MR, et al. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice. Gastroenterology. 2010;139:664–74.PubMedCentralPubMedCrossRefGoogle Scholar
  218. 218.
    MacGregor RR, Gluckman SJ, Senior JR. Granulocyte function and levels of immunoglobulins and complement in patients admitted for withdrawal from alcohol. J Infect Dis. 1978;138:747–55.PubMedCrossRefGoogle Scholar
  219. 219.
    Kolev K, Machovich R. Molecular and cellular modulation of fibrinolysis. Thromb Haemost. 2003;89:610–21.PubMedGoogle Scholar
  220. 220.
    Arteel GE. New role of plasminogen activator inhibitor-1 in alcohol-induced liver injury. J Gastroenterol Hepatol. 2008;23:S54–9.PubMedCentralPubMedCrossRefGoogle Scholar
  221. 221.
    Beier JI, Guo L, von Montfort C, et al. New role of resistin in lipopolysaccharide-induced liver damage in mice. J Pharmacol Exp Ther. 2008;325:801–8.PubMedCentralPubMedCrossRefGoogle Scholar
  222. 222.
    Beier JI, Luyendyk JP, Guo L, et al. Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice. Hepatology. 2009;49:1545–53.PubMedCentralPubMedCrossRefGoogle Scholar
  223. 223.
    Pearson JM, Schultze AE, Schwartz KA, et al. The thrombin inhibitor, hirudin, attenuates lipopolysaccharide-induced liver injury in the rat. J Pharmacol Exp Ther. 1996;278:378–83.PubMedGoogle Scholar
  224. 224.
    Ganey PE, Luyendyk JP, Maddox JF, et al. Adverse hepatic drug reactions: inflammatory episodes as consequence and contributor. Chem Biol Interact. 2004;150:35–51.PubMedCrossRefGoogle Scholar
  225. 225.
    Hodivala-Dilke KM, Reynolds AR, Reynolds LE. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res. 2003;314:131–44.PubMedCrossRefGoogle Scholar
  226. 226.
    Zhou HF, Chan HW, Wickline SA, et al. Alphavbeta3-targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J. 2009;23:2978–85.PubMedCentralPubMedCrossRefGoogle Scholar
  227. 227.
    Dimova EY, Kietzmann T. Metabolic, hormonal and environmental regulation of plasminogen activator inhibitor-1 (PAI-1) expression: lessons from the liver. Thromb Haemost. 2008;100:992–1006.PubMedGoogle Scholar
  228. 228.
    Tran-Thang C, Fasel-Felley J, Pralong G, et al. Plasminogen activators and plasminogen activator inhibitors in liver deficiencies caused by chronic alcoholism or infectious hepatitis. Thromb Haemost. 1989;62:651–3.PubMedGoogle Scholar
  229. 229.
    Seth D, Hogg PJ, Gorrell MD, et al. Direct effects of alcohol on hepatic fibrinolytic balance: implications for alcoholic liver disease. J Hepatol. 2008;48:614–27.PubMedCrossRefGoogle Scholar
  230. 230.
    Lisman T, Caldwell SH, Burroughs AK, et al. Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol. 2010;53:362–71.PubMedCrossRefGoogle Scholar
  231. 231.
    Villa E, Camma C, Marietta M, et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterol. 2012;143:1253–60.CrossRefGoogle Scholar
  232. 232.
    Seth D, Duly A, Kuo PC, et al. Osteopontin is an important mediator of alcoholic liver disease via hepatic stellate cell activation. World J Gastroenterol. 2014;20:13088–104.PubMedCentralPubMedCrossRefGoogle Scholar
  233. 233.
    Seth D, Haber PS, Syn WK, et al. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol. 2011;26:1089–105.PubMedCrossRefGoogle Scholar
  234. 234.
    Morales-Ibanez O, Domínguez M, Ki SH, et al. Human and experimental evidence supporting a role for osteopontin in alcoholic hepatitis. Hepatology. 2013;58:1742–56.PubMedCentralPubMedCrossRefGoogle Scholar
  235. 235.
    Ge X, Leung TM, Arriazu E, et al. Osteopontin binding to lipopolysaccharide lowers tumor necrosis factor-α and prevents early alcohol-induced liver injury in mice. Hepatology. 2014;59:1600–16.PubMedCentralPubMedCrossRefGoogle Scholar
  236. 236.
    Lazaro R, Wu R, Lee S, et al. Osteopontin deficiency does not prevent but promotes alcoholic neutrophilic hepatitis in mice. Hepatology. 2015;61(1):129–40. doi: 10.1002/hep.27383.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleUSA
  2. 2.Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of MedicineEskenazi Health SystemIndianapolisUSA

Personalised recommendations