Skip to main content

Steady-State Modelling of a Low-Temperature Multi-effect Distillation Plant

  • Chapter
Concentrating Solar Power and Desalination Plants

Abstract

This chapter describes the development of a mathematical model of a vertically stacked, forward feed (FF), low-temperature multi-effect distillation (LT-MED) plant. The model was developed by taking into consideration the same design and operational characteristics as the pilot multi-effect distillation (MED) plant at Plataforma Solar de Almería, in the southeast of Spain. The model has been validated, comparing the results of the model with the experimental data from the pilot plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Heat transfer area (m2)

C p :

Specific heat (kJ/kg°C)

M :

Mass flow rate (kg/s)

:

Mass flow rate by flashing process (kg/s)

N :

Total number of effects

NEA:

Non-equilibrium allowance (°C)

PR:

Performance ratio

Q :

Heat transfer rate (kW)

T :

Temperature (°C)

T´:

Temperature by flashing process (°C)

U :

Overall heat transfer coefficient (kW/m2°C)

X :

Salt concentration (g/kg)

TTL:

Thermodynamic loss (°C)

λ :

Latent heat of evaporation (kJ/kg)

b:

Reject brine

v:

Vapour entering, leaving (as distillate) and generated inside the evaporator or effect

c:

Condenser

cw:

Cooling seawater

sw:

Seawater

d:

Distillate

da:

Distillate from the distribution system

dr:

Distillate entering the mixers in the distribution system

dm:

Portion of distillate distributed between the effects and the mixers

vh:

Vapour consumed by preheater or distillate generated in the preheater

gb:

Generated vapour by boiling

gf:

Generated vapour by flashing

f:

Feedwater

fv:

Generated vapour by boiling and flashing

s:

Heating steam in the first effect

eff:

Effect

ph:

Preheater

vc:

Vapour in the condenser

References

  • Aly, N. H., & El-Figi, A. K. (2003). Thermal performance of seawater desalination systems. Desalination, 158, 127–142.

    Article  Google Scholar 

  • Ameri, M., Mohammadi, S. S., Hosseini, M., & Seifi, M. (2009). Effect of design parameters on multi-effect desalination system specifications. Desalination, 245, 266–283.

    Article  Google Scholar 

  • Darwish, M. A., & Abdulraheim, H. K. (2008). Feed water arrangements in a multi-effect desalting system. Desalination, 228, 30–54.

    Article  Google Scholar 

  • Darwish, M. A., Al-Juwayhel, F., & Abdulraheim, H. K. (2006). Multi-effect boiling systems from an energy viewpoint. Desalination, 194, 22–39.

    Article  Google Scholar 

  • Druetta, P., Aguirre, P., & Mussati, S. (2013). Optimization of multi-effect evaporation desalination plants. Desalination, 311, 1–15.

    Article  Google Scholar 

  • El-Allawy M. (2003, 28 Sept–3 Oct). Predictive simulation of the performance of MED/TVC desalination distiller. In: Proceedings IDA World Congress, Bahamas. International Desalination Association: Topsfield, MA.

    Google Scholar 

  • El-Dessouky, H. T., & Ettouney, H. M. (1999). Multiple-effect evaporation desalination systems: Thermal analysis. Desalination, 125, 259–276.

    Article  Google Scholar 

  • El-Dessouky, H., & Ettouney, H. (2002). Fundamentals of salt water desalination (1st ed.). Amsterdam, The Netherlands: Elsevier Science.

    Google Scholar 

  • El-Dessouky, H., Alatiqi, I., Bingulac, S., & Ettouney, H. (1998). Steady-state analysis of the multiple effect evaporation desalination process. Chemical Engineering and Technology, 21, 437–451.

    Google Scholar 

  • El-Nashar, A. M. (2000). Predicting part load performance of small MED evaporators – A simple simulation program and its experimental verification. Desalination, 130, 217–234.

    Article  Google Scholar 

  • El-Nashar, A. M., & Qamhiyeh, A. (1990). Simulation of the performance of MES evaporators under unsteady state operating conditions. Desalination, 79, 83.

    Article  Google Scholar 

  • El-Nashar, A. M., & Qamhiyeh, A. A. (1995). Simulation of the steady-state operation of a multi-effect stack seawater distillation plant. Desalination, 101, 231–243.

    Article  Google Scholar 

  • El-Sayed, Y. M., & Silver, R. S. (1980). Principles of desalination: Vol. A (2nd ed.). New York: Academic.

    Google Scholar 

  • Gautami, G., & Khanam, S. (2012). Selection of optimum configuration for multiple effect evaporator system. Desalination, 288, 16–23.

    Article  Google Scholar 

  • Jyoti, G., & Khanam, S. (2014). Simulation of heat integrated multiple effect evaporator system. International Journal of Thermal Sciences, 76, 110–117.

    Article  Google Scholar 

  • Leblanc, J., Andrews, J., & Akbarzadeh, A. (2010). Low-temperature solar-thermal multi-effect evaporation desalination systems. International Journal of Energy Research, 34, 393–403.

    Article  Google Scholar 

  • NIST. (2007). NIST reference fluid thermodynamic and transport properties database (REFPROP) version 8.0 software. National Institute of Standards and Technology, Gaithersburg, MD

    Google Scholar 

  • Palenzuela, P., Alarcón, D., Zaragoza, G., Blanco, J., & Ibarra, M. (2013). Parametric equations of the variables of a steady-state model of a multi-effect distillation plant. Desalination and Water Treatment, 51, 1229–1241.

    Article  Google Scholar 

  • Palenzuela, P., Hassan, A. S., Zaragoza, G., & Alarcón-Padilla, D. C. (2014). Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant. Desalination, 337, 31–42.

    Article  Google Scholar 

  • Piacentino, A., & Cardona, E. (2010). Advanced energetics of a multiple-effects-evaporation (MEE) desalination plant. Part II: Potential of the cost formation process and prospects for energy saving by process integration. Desalination, 259, 44–52.

    Article  Google Scholar 

  • Reddy, K. S., Kumar, K. R., O'Donovan, T. S., & Mallick, T. K. (2012). Performance analysis of an evacuated multi-stage solar water desalination system. Desalination, 288, 80–92.

    Article  Google Scholar 

  • Wang, X., Christ, C., Regenauer-Lieb, K., Hooman, K., & Chua, H. T. (2011). Low grade heat driven multi-effect distillation technology. International Journal of Heat and Mass Transfer, 54, 5497–5503.

    Article  Google Scholar 

  • Yilmaz, İ. H., & Söylemez, M. S. (2012). Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources in Turkey. Desalination, 291, 23–40.

    Article  Google Scholar 

  • Zarza, E. (1991). Solar thermal desalination project, first phase results and second phase description (1st ed.). Madrid, Spain: CIEMAT.

    Google Scholar 

  • Zarza, E. (1994). Solar thermal desalination project: Phase II results and final project report. Madrid, Spain: Secretaría General Técnica del CIEMAT, PSA/CIEMAT.

    Google Scholar 

  • Zhao, D., Xue, J., Li, S., Sun, H., & Zhang, Q. (2011). Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater. Desalination, 273, 292–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palenzuela, P., Alarcón-Padilla, DC., Zaragoza, G. (2015). Steady-State Modelling of a Low-Temperature Multi-effect Distillation Plant. In: Concentrating Solar Power and Desalination Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20535-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20535-9_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20534-2

  • Online ISBN: 978-3-319-20535-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics