Skip to main content

Two-nanometer Laser Synthesized Si-Nanoparticles for Low Power Memory Applications

  • Chapter
  • First Online:
Book cover 3D Stacked Chips

Abstract

Current flash memory devices are expected to face two major challenges in the near future: density and voltage scaling. The density of the memory is related to the gate length scaling which is constrained by the gate stack, namely, the tunnel oxide thickness. In fact, the gate length is required to be commensurate with the gate stack in order to maintain a good gate control and to avoid short channel effects. However, in conventional flash memories, the tunnel oxide thickness has a lower limit of 6–7 nm (depending on NOR or NAND structure) in order to avoid back-tunneling and thus leakage of charges which destroys the necessary retention characteristic of the memory ( > 10 years). The second problem which needs to be solved is the high program and erase operating voltages. Once again, the limitation to operating voltage scaling is the inability to reduce gate stack thickness. Therefore, it is imperative to find novel structures and materials to be incorporated in the memory cells which would allow tunnel oxide and voltage scaling. In this study, MOSFET- and MOSCAP-based memory devices are investigated along with the use of 2-nm silicon nanoparticles (Si-NPs) for charge storage. Atomic layer deposition is used to deposit the active layer of the memory and the spin coating is performed to deliver the Si-nanoparticles across the sample.

Reprinted with permission from El-Atab N, Ozcan A, Alkis S et al. (2014) Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via Poole-Frenkel hole emission. Appl. Phys. Lett. 104:013112. Copyright 2014. AIP Publishing LLC.

Reprinted with permission from El-Atab N, Ozcan A, Alkis S et al. (2014) Silicon Nanoparticle Charge Trapping Memory Cell. Phys. Status Solidi RRL 8:629. Copyright (c) 2014. John Wiley and Sons.

Reprinted with permission from El-Atab N, Rizk A, Tekcan B et al. (2015) Memory effect by charging of ultra-small 2-nm laser-synthesized Si-nanoparticles embedded in Si-Al2O3-SiO2 structure. Phys. Status Solidi A 212. Copyright (c) 2015. John Wiley and Sons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The International Technology Roadmap for Semiconductors, ITRS (2012)

    Google Scholar 

  2. B. Yu, 15nm gate length planar CMOS transistor, in IEDM, pp. 257–271 (2001)

    Google Scholar 

  3. Y. King, Thin dielectric technology and memory devices. Ph.D dissertation, University of California, Berkeley (1999)

    Google Scholar 

  4. K. Ramkumar, Cypress SONOS Technology. Cypress Semiconductor Corporation. Available via DIALOG (2013), http://www.cypress.com/?docID=45736ofsubordinatedocument. Cited 10 Sept 2013

  5. M.H. White, D.A. Adams, J. Bu, On the go with SONOS. IEEE Circuits Devices Mag. 16, 22–31(2000)

    Article  Google Scholar 

  6. L. Squire, E. Kandel, Memory From Mind to Molecule (Scientific American Library Series, New York, 1999)

    Google Scholar 

  7. A. Khakifirooz, D.A. Antoniadis, MOSFET performance – Part I: historical trends. IEEE Trans. Electron Devices 55, 1391–1400 (2008)

    Article  Google Scholar 

  8. P. Pavan, R. Bez, E. Zanoni, Flash memory cells-an overview. Proc. IEEE 85, 1248–1271 (1997)

    Article  Google Scholar 

  9. R. Bez, E. Camerlenghi, A. Modelli, et al., Introduction to flash memory. Proc. IEEE 91, 489–502 (2003)

    Article  Google Scholar 

  10. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, Hoboken, 2007)

    Google Scholar 

  11. S. Tiwari, F. Rana, K. Chan, et al., Volatile and non-volatile memories in silicon with nano-crystal storage, in IEDM Technical Digest, p. 521 (1995)

    Google Scholar 

  12. W.L. Wilson, P.F. Szajowski, L.E. Brus, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993)

    Article  Google Scholar 

  13. G. Ledoux, J. Gong, F. Huisken, et al., Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl. Phys. Lett. 80, 4834–4836 (2002)

    Article  Google Scholar 

  14. J.P. Proot, C. Delerue, G. Allan, Electronic structure and optical properties of silicon crystallites: application to porous silicon. Appl. Phys. Lett. 61, 1948–1950 (1992)

    Article  Google Scholar 

  15. C. Delerue, G. Allan, Effective dielectric constant of nanostructured Si layers. Appl. Phys. Lett. 88, 173117–173120 (2006)

    Article  Google Scholar 

  16. D.V. Melnikov, J.R. Chelikowsky, Electron affinities and ionization energies in Si and Ge nanocrystals. Phys. Rev. B 69, 113305–113309 (2004)

    Article  Google Scholar 

  17. H.H. Hanafi, S. Tiwari, I. Khan, et al., Fast and long retention-time nano-crystal memory. IEEE Trans. Electron Devices 43, 1553–1558 (1996)

    Article  Google Scholar 

  18. Q. Wan, T.H. Wang, M. Zhu, et al., Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3 gate dielectric. Appl. Phys. Lett. 82, 4708–4710 (2003)

    Article  Google Scholar 

  19. S. Alkis, A.K. Okyay, B. Ortac, Post-treatment of silicon nanocrystals produced by ultra-short pulsed laser ablation in liquid: toward blue luminescent nanocrystal generation. J. Phys. Chem. 116, 3432–3436 (2012)

    Google Scholar 

  20. R.M. Sankaran, D. Holunga, R.C. Flagan, et al., Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges. Nano Lett. 5, 537–541 (2005)

    Article  Google Scholar 

  21. N. El-Atab, S. Alqatari, F.B. Oruc, et al., Diode behavior in ultra-thin low temperature ALD grown zinc-oxide on silicon. AIP Adv. 3, 102119 (2013)

    Article  Google Scholar 

  22. Signatone, Probe Station. Signatone Corporation. Available via DIALOG (2013), www.signatone.com. of subordinate document. Cited 10 Sept 2013

  23. Agilent, Semiconductor Device Analyzer B1505A. Agilent Technologies. Available via DIALOG (2014), www.home.agilent.com of subordinate document. Cited 10 Sept 2013

  24. L.W. Lai, C.H. Liu, C.T. Lee, et al., Investigation of silicon nanoclusters embedded in ZnO matrices deposited by cosputtering system. J. Mater. Res. 23, 2506–2511 (2008)

    Article  Google Scholar 

  25. N. El-Atab, A. Ozcan, S. Alkis, et al., Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via Poole-Frenkel hole emission. Appl. Phys. Lett. 104, 013112 (2014)

    Article  Google Scholar 

  26. M.L. Huang, Y.C. Chang, C.H. Chang, et al., Energy-band parameters of atomic-layer-deposition heterostructure. Appl. Phys. Lett. 89, 012903 (2006)

    Article  Google Scholar 

  27. G.D. Wilk, R.M. Wallace, J.M. Anthony, et al., High-\(\hat{\mathrm{I}}^{\circ }\) gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001)

    Article  Google Scholar 

  28. N. El-Atab, A. Rizk, A.K. Okyay, et al., Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer. AIP Adv. 3, 112116 (2013)

    Article  Google Scholar 

  29. O.M. Nayfeh Nonvolatile memory devices with colloidal 1.0 nm silicon nanoparticles: principle of operation, fabrication, measurements, and analysis. Ph.D dissertation, EECS, MIT, Cambridge (2009)

    Google Scholar 

  30. A. Alnuaimi, A. Nayfeh, V. Koldyaev, Electric field and temperature dependence on the activation energy associated with gate induced drain leakage (GIDL). J. Appl. Phys. 113, 044513–044519 (2013)

    Article  Google Scholar 

  31. J. Bu, M.H. White, Design considerations in scaled SONOS nonvolatile memory devices. Solid-State Electron. 45, 113–120 (2001)

    Article  Google Scholar 

  32. S.D. Ganichev, E. Ziemann, W. Prettl, et al., Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors. Phys. Rev. 61, 10361 (2000)

    Article  Google Scholar 

  33. C.H. Lee, S.H. Hur, Y.C. Shin, et al., Charge-trapping device structure of SiO2/SiN/high-k dielectric Al2O3 for high-density flash memory. Appl. Phys. Lett. 86, 152908 (2005)

    Article  Google Scholar 

  34. Y.M. Chang, W.L. Yang, S.H. Liu, et al., A hot hole-programmed and low-temperature-formed SONOS flash memory. Nanoscale Res. Lett. 8, 340 (2013)

    Article  Google Scholar 

  35. N. Kramer, C.V. Berkel, Reverse current mechanisms in amorphous silicon diodes. Appl. Phys. Lett. 64, 1129 (1994)

    Article  Google Scholar 

  36. N. El-Atab, A. Ozcan, S. Alkis, et al., Silicon nanoparticle charge trapping memory cell. Phys. Status Solidi RRL 8, 629 (2014)

    Article  Google Scholar 

  37. W.R. Harrell, J. Frey, Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films. Thin Solid Films 352, 95 (1999)

    Article  Google Scholar 

  38. N. El-Atab, F. Cimen, S. Alkis, et al., Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer. Appl. Phys. Lett. 105, 033102 (2014)

    Article  Google Scholar 

  39. N. El-Atab, F. Cimen, S. Alkis, et al., Future of health insurance. Enhanced memory effect via quantum confinement in 16 nm InN nanoparticles embedded in ZnO charge trapping layer. Appl. Phys. Lett. 104, 253106 (2014)

    Google Scholar 

  40. N. El-Atab, A. Rizk, B. Tekcan, et al., Memory effect by charging of ultra-small 2-nm laser-synthesized Si-nanoparticles embedded in Si-Al2O3-SiO2 structure. Phys. Status Solidi A 212, 1751–1755 (2015)

    Article  Google Scholar 

  41. A. Nayfeh, A.K. Okyay, N. El-Atab, et al., Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles, in Invited, 226th ECS Meeting 2014, vol. 46, pp. 2143–2143, Cancun (2014)

    Google Scholar 

  42. A. Nayfeh, A.K. Okyay, N. El-Atab, et al., Transparent graphene nanoplatelets for charge storage in memory devices, Invited, 226th ECS Meeting 2014, vol. 37, pp. 1879–1879, Cancun (2014)

    Google Scholar 

  43. N. El-Atab, A. Rizk, B. Tekcan, et al., MOS memory using 2-nm silicon nanoparticles charge trapping layer, in Advances in Materials and Processing Technologies 2014 Conference, Dubai (2014)

    Google Scholar 

  44. N. El-Atab, A. Ozcan, S. Alkis, et al., 2-nm laser-synthesized Si nanoparticles for low-power charge trapping memory devices, in 14th IEEE International Conference on Nanotechnology, Toronto (2014)

    Google Scholar 

  45. N. El-Atab, B. Turgut, A. Okyay, M. Nayfeh, A. Nayfeh, Enhanced non-volatile memory characteristics with Quattro-layer graphene-nanoplatelets vs. 2.85-nm Si-nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide. Nanoscale Res. Lett. 10, 248 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Nayfeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El-Atab, N., Okyay, A.K., Nayfeh, A. (2016). Two-nanometer Laser Synthesized Si-Nanoparticles for Low Power Memory Applications. In: Elfadel, I., Fettweis, G. (eds) 3D Stacked Chips. Springer, Cham. https://doi.org/10.1007/978-3-319-20481-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20481-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20480-2

  • Online ISBN: 978-3-319-20481-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics