Skip to main content

Copper-Based TSV: Interposer

  • Chapter
  • First Online:
3D Stacked Chips

Abstract

Electrical copper-based through-silicon vias (TSVs) are key elements for vertical connections in 3D interposer chip stacks. For the fabrication of such a chip stack, TSV structures with high aspect ratios (AR) of more than ten are necessary. The following contribution presents several of the key technical challenges associated with TSV fabrications. They include: silicon etching, insulator, barrier- and seed-layer material system deposition by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and electrochemical deposition (ECD) of TSV copper fills. Additionally we describe a process for interconnecting and bumping using solder bumps to realize an Si-based interposer as 3D chip stack. To meet these challenges, a process for fabricating high aspect ratio TSVs is presented. The process has been implemented and is shown to result in TSVs with aspect ratios from 10:1 up to 20:1 in thinned 200 μm thick wafer with 10–40 μm in TSV diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The properties of different stop layers are investigated in Sect. 2.2 of this chapter.

  2. 2.

    Storage of such wafers can be for only a very short time under nitrogen atmosphere or vacuum.

  3. 3.

    Sn60Pb40—liquidus temperature 183 C.

  4. 4.

    Sn97Ag3—liquidus temperature 221 C.

References

  1. J.W. Bartha, J. Greschner, M. Puech, Ph. Maquin, Low temperature etching of Si in high density plasma using \(\mathrm{SF}_{6}/\mathrm{O}_{2}\). Microelectron. Eng. 27(1), 453–456 (1995)

    Article  Google Scholar 

  2. F. Lärmer, A. Schilp, German patent no. DE-4241045, 26.5.1994

    Google Scholar 

  3. S.L. Lai, D. Johnson, R. Westerman, Aspect ratio dependent etching lag reduction in deep silicon etch processes. J. Vac. Sci. Technol. A 24(4), 1283–1288 (2006)

    Article  Google Scholar 

  4. G.S. Hwang, K.P. Giapis, On the origin of the notching effect during etching in uniform high density plasmas. J. Vac. Sci. Technol. B 15(1), 70–87 (1997)

    Article  Google Scholar 

  5. C.-H. Kim, Y.-K. Kim, Prevention method of a notching caused by surface charging in silicon reactive ion etching. J. Micromech. Microeng. 15(2), 358 (2005)

    Google Scholar 

  6. N. Lietaer, P. Storås, L. Breivik, S. Moe, Development of cost-effective high-density through-wafer interconnects for 3D microsystems. J. Micromech. Microeng. 16(6), S29 (2006)

    Google Scholar 

  7. K. Buchanan, The evolution of interconnect technology for silicon integrated circuitry. Proc. of International Conference on Compound Semiconductor Manufacturing - GaAsMAN-TECH 44, 1–3 (2002)

    Google Scholar 

  8. F.E. Rasmussen, J. Frech, M. Heschel, O. Hansen, Fabrication of high aspect ratio through-wafer vias in CMOS wafers for 3-D packaging applications, in Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), vol. 2 (IEEE, Piscataway, New Jersey, 2003), pp. 1659–1662

    Google Scholar 

  9. D. Archard, K. Giles, A. Price, S. Burgess, K. Buchanan, Low temperature PECVD of dielectric films for TSV applications, in Electronic Components and Technology Conference (ECTC) (2010), pp. 764–768. ISBN 3-932434-75-7

    Google Scholar 

  10. K. Powell, S. Burgess, T. Wilby, R. Hyndman, J. Callahan, 3D IC process integration challenges and solutions, in International Interconnect Technology Conference (IITC) (IEEE, Piscataway, New Jersey, 2008), pp. 40–42

    Google Scholar 

  11. M. Ritala, M. Leskelä, H.S. Nalwa, Handbook of Thin Film Materials, vol. 1, Chap. 2 (Academic, San Diego, 2001), p. 103

    Google Scholar 

  12. S.K. Kim, J.H. Han, G.H. Kim, C.S. Hwang, Investigation on the growth initiation of Ru thin films by atomic layer deposition. Chem. Mater. 22(9), 2850–2856 (2010)

    Article  Google Scholar 

  13. M. Leskelä, M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409(1), 138–146 (2002)

    Article  Google Scholar 

  14. S.M. George, Atomic layer deposition: an overview. Chem. Rev. 110(1), 111–131 (2009)

    Article  Google Scholar 

  15. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 2006)

    Google Scholar 

  16. H. Wojcik, R. Kaltofen, U. Merkel, C. Krien, S. Strehle, J. Gluch, M. Knaut, C. Wenzel, A. Preusse, J.W. Bartha et al., Electrical evaluation of Ru–W (-N), Ru–Ta (-N) and Ru–Mn films as Cu diffusion barriers. Microelectron. Eng. 92, 71–75 (2012)

    Article  Google Scholar 

  17. D. Edelstein, C. Uzoh, C. Cabral Jr., P. DeHaven, P. Buchwalter, A. Simon, E. Cooney, S. Malhotra, D. Klaus, H. Rathore et al., A high performance liner for copper damascene interconnects, in Proceedings of the IEEE 2001 International Interconnect Technology Conference (IEEE, Piscataway, New Jersey, 2001), pp. 9–11

    Google Scholar 

  18. S.M. Aouadi, Y. Zhang, P. Basnyat, S. Stadler, P. Filip, M. Williams, J.N. Hilfiker, N. Singh, J.A. Woollam, Physical and chemical properties of sputter-deposited \(\mathrm{TaC}_{\mathrm{x}}\mathrm{N}_{\mathrm{y}}\) films. J. Phys. Condens. Matter 18(6), 1977 (2006)

    Google Scholar 

  19. M. Knaut, M. Junige, V. Neumann, H. Wojcik, T. Henke, C. Hossbach, A. Hiess, M. Albert, J.W Bartha, Atomic layer deposition for high aspect ratio through silicon vias. Microelectron. Eng. 107, 80–83 (2013)

    Google Scholar 

  20. D. Schmidt, M. Knaut, C. Hossbach, M. Albert, C. Dussarrat, B. Hintze, J.W. Bartha, Atomic layer deposition of Ta–N-based thin films using a tantalum source. J. Electrochem. Soc. 157(6), H638–H642 (2010)

    Article  Google Scholar 

  21. C. Hossbach, S. Teichert, J. Thomas, L. Wilde, H. Wojcik, D. Schmidt, B. Adolphi, M. Bertram, U. Mühle, M. Albert et al., Properties of plasma-enhanced atomic layer deposition-grown tantalum carbonitride thin films. J. Electrochem. Soc. 156(11), H852–H859 (2009)

    Article  Google Scholar 

  22. M. Knaut, M. Junige, M. Albert, J.W. Bartha, In-situ real-time ellipsometric investigations during the atomic layer deposition of ruthenium: a process development from [(ethylcyclopentadienyl)(pyrrolyl) ruthenium] and molecular oxygen. J. Vac. Sci. Technol. A 30(1), 01A151 (2012)

    Google Scholar 

  23. M. Beblo, A. Berktold, U. Bleil, H. Gebrande, B. Grauert, U. Haack, V. Haack, H. Kern, H. Miller, N. Petersen et al., Landolt-Börnstein: numerical data and functional relationships in science and technology-new series, in Landolt-Bornstein: Group 6: Astronomy, vol. 1 (Springer, Berlin, 1982)

    Google Scholar 

  24. L. Guo, A. Radisic, P.C. Searson, Electrodeposition of copper on oxidized ruthenium. J. Electrochem. Soc. 153(12), C840–C847 (2006)

    Article  Google Scholar 

  25. N.S. Marinkovic, M.B. Vukmirovic, R.R. Adzic, Some recent studies in ruthenium electrochemistry and electrocatalysis, in Modern Aspects of Electrochemistry (Springer, New York, 2008), pp. 1–52

    Google Scholar 

  26. T.P. Moffat, M. Walker, P.J. Chen, J.E. Bonevich, W.F. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala, M. Leskelä et al., Electrodeposition of Cu on Ru barrier layers for damascene processing. J. Electrochem. Soc. 153(1), C37–C50 (2006)

    Article  Google Scholar 

  27. P.P. Sharma, I.I. Suni, Impedance studies of Ru oxide reduction in sulfuric acid. J. Electrochem. Soc. 158(2), H111–H114 (2011)

    Article  Google Scholar 

  28. Ch. Wenzel, K. Drescher, Applikation flip-chip-bumping, in Interdisziplinäre Methoden in der Aufbau- und Verbindungstechnik, ed. by K.-J. Wolter, S. Wiese (Ddp Goldenbogen, Dresden, Germany, 2003), pp. 157–170. ISBN 3-932434-75-7

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge A. Hiess, W. Haas, M. Junige, U. Merkel, K. Richter, A. Jahn, S. Waurenschk, F. Winkler, C. Wenzel from the Institute of Semiconductors and Microsystems, TU Dresden, for their assistance and hard work. Without their research, this project would have been impossible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Killge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Killge, S., Neumann, V., Bartha, J.W. (2016). Copper-Based TSV: Interposer. In: Elfadel, I., Fettweis, G. (eds) 3D Stacked Chips. Springer, Cham. https://doi.org/10.1007/978-3-319-20481-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20481-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20480-2

  • Online ISBN: 978-3-319-20481-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics