Skip to main content

Solution of Optimal Control Problems

  • Chapter
  • First Online:
Book cover Optimal Operation of Batch Membrane Processes

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In this chapter we derive necessary conditions for optimality (NCO) that can identify candidates for a solution of an OCP. We introduce analytical methods of solving the OCPs. Next, we discuss how gradients to optimisation criterion w.r.t. optimisation variables can be gathered. These represent a key issue in solving the OCP numerically. We present a few most popular numerical methods used to solve the problem of optimal control. We also discuss closed-loop implementation, handling of disturbances and nonlinear state-feedback control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further explanation see [16].

  2. 2.

    In this case, an \(\ell _1\) norm is used in the objective and the controls are restricted to not change a sign.

References

  1. Alstad V, Skogestad S, Hori ES (2009) Optimal measurement combinations as controlled variables. J Process Contr 19:128–148

    Article  Google Scholar 

  2. Bellman R (1957) Dynamic Programming. Princeton University Press

    Google Scholar 

  3. Biegler LT (1984) Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput Chem Eng 8(3/4):243–248

    Article  Google Scholar 

  4. Bock HG, Plitt KJ (1984) A multiple shooting algorithm for direct solution of optimal control problems. Proceedings 9th IFAC World Congress Budapest XLI I(2):243–247

    Google Scholar 

  5. Brusch RG, Schappelle RH (1973) Solution of highly constrained optimal control problems using nonlinear programming. AIAA J 11(2):135–136

    Article  Google Scholar 

  6. Bryson, Jr AE, Ho YC (1975) Applied Optimal Control. Hemisphere Publishing Corporation

    Google Scholar 

  7. Camacho EF, Bordons C (1999) Model Predictive Control. Springer-Verlag, London

    Book  Google Scholar 

  8. Chang FR (2004) Stochastic Optimization in Continuous Time. Cambridge University Press

    Google Scholar 

  9. Čižniar M, Salhi D, Fikar M, Latifi MA (2005) A MATLAB package for orthogonal collocations on finite elements in dynamic optimisation. In: Mikleš J, Dvoran J, Fikar M (eds) Proceedings of the 15th Int. Conference Process Control ’05, Štrbské Pleso, June 7–10, 2005, Slovakia, 058f.pdf

    Google Scholar 

  10. Feehery WF (1998) Dynamic optimization with path constraints. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  11. Fleming WH, Rishel RW (1975) Deterministic And Stochastic Optimal Control. Springer Verlag

    Google Scholar 

  12. Goh CJ, Teo KL (1988) Control parameterization: A unified approach to optimal control problems with general constraints. Automatica 24(1):3–18

    Article  MATH  MathSciNet  Google Scholar 

  13. Grancharova A, Johansen TA (2012) Explicit Nonlinear Model Predictive Control. No. 429 in Lecture Notes in Control and Information Sciences, Springer Verlag

    Google Scholar 

  14. Hirmajer T, Fikar M (2007) Open loop optimal control of a hybrid system. Selected Topics in Modelling and Control 5:45–51

    Google Scholar 

  15. Hirmajer T, Čižniar M, Fikar M, Balsa-Canto E, Banga JR (2008) Brief introduction to DOTcvp–dynamic optimization toolbox. In: Proceedings of the 8th International Scientific–Technical Conference Process Control 2008, Kouty nad Desnou, Czech Republic

    Google Scholar 

  16. Hull DG (2003) Optimal Control Theory for Applications. Springer-Verlag New York, Mechanical Engineering Series

    Book  MATH  Google Scholar 

  17. Kouvaritakis B, Cannon M (eds) (2001) Non-linear Predictive Control: Theory and Practice. The Institution of Engineering and Technology, London

    Google Scholar 

  18. Kvasnica M (2009) Real-Time Model Predictive Control via Multi-Parametric Programming: Theory and Tools. VDM Verlag, Saarbruecken

    Google Scholar 

  19. Maciejowski JM (2002) Predictive Control with Constraints. Prentice Hall, London

    Google Scholar 

  20. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The Mathematical Theory of Optimal Processes. John Wiley & Sons Inc, New York

    MATH  Google Scholar 

  21. Rawlings JB, Mayne DQ (2009) Model Predictive Control: Theory and Design. Nob Hill

    Google Scholar 

  22. Rosen O, Luus R (1991) Evaluation of gradients for piecewise constant optimal control. Comput Chem Eng 15(4):273–281

    Article  Google Scholar 

  23. Rossiter JA (2003) Model-Based Predictive Control: A Practical Approach. CRC Press Inc

    Google Scholar 

  24. Skogestad S (2004) Near-optimal operation by self-optimizing control: From process control to marathon running and business systems. Comput Chem Eng 29(1):127–137

    Article  MathSciNet  Google Scholar 

  25. Srinivasan B, Bonvin D (2004) Dynamic Optimization under Uncertainty via NCO Tracking: A Solution Model Approach. In: BatchPro Symposium, pp 17–35

    Google Scholar 

  26. Srinivasan B, Bonvin D, Visser E, Palanki S (2003a) Dynamic Optimization of Batch Processes: I. Characterization of the Nominal Solution. Comput Chem Eng 27:1–26

    Google Scholar 

  27. Srinivasan B, Bonvin D, Visser E, Palanki S (2003b) Dynamic Optimization of Batch Processes: II. Role of Measurements in Handling Uncertainty. Comput Chem Eng 27:27–44

    Google Scholar 

  28. Srinivasan B, Palanki S, Bonvin D (2003c) Dynamic optimization of batch processes: I. Characterization of the nominal solution. Comput Chem Eng 27(1):1–26

    Google Scholar 

  29. Tsang TH, Himmelblau DM, Edgar TF (1975) Optimal control via collocation and nonlinear programming. Int J Control 21(5):763–768

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav Paulen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paulen, R., Fikar, M. (2016). Solution of Optimal Control Problems. In: Optimal Operation of Batch Membrane Processes. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-20475-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20475-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20474-1

  • Online ISBN: 978-3-319-20475-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics