Spatial Subdivision of Gabriel Graph

  • M. Z. Hossain
  • M. A. Wahid
  • Mahady Hasan
  • M. Ashraful Amin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9142)

Abstract

Gabriel graph is one of the well-studied proximity graphs which has a wide range of applications in various research areas such as wireless sensor network, gene flow analysis, geographical variation analysis, facility location, cluster analysis, and so on. In numerous applications, an important query is to find a specific location in a Gabriel graph at where a given set of adjacent vertices can be obtained if a new point is inserted. To efficiently compute the answer of this query, our proposed solution is to subdivide the plane associated with the Gabriel graph into smaller subregions with the property that if a new point is inserted anywhere into a specific subregion then the set of adjacent vertices in the Gabriel graph remains constant for that point, regardless of the exact location inside the subregion. In this paper, we examine these planar subregions, named redundant cells, including some essential properties and sketch an algorithm of running time \({\mathcal {O}}(n^2)\) to construct the arrangement that yields these redundant cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumgart, M.: Partitioning bispanning graphs into spanning trees. Mathematics in Computer Science 3(1), 3–15 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Santa (2008)CrossRefGoogle Scholar
  3. 3.
    Bose, P., Cardinal, J., Collette, S., Demaine, E.D., Palop, B., Taslakian, P., Zeh, N.: Relaxed gabriel graphs. In: Proceedings of the 21st Annual Canadian Conference on Computational Geometry, CCCG, pp. 169–172, British Columbia, Canada (2009)Google Scholar
  4. 4.
    Bose, P., Collette, S., Hurtado, F., Korman, M., Langerman, S., Sacristan, V., Saumell, M.: Some properties of higher order delaunay and gabriel graphs. In: Proceedings of the 22nd Annual Canadian Conference on Computational Geometry, CCCG, pp. 13–16, Manitoba, Canada (2010)Google Scholar
  5. 5.
    Devillers, O., Teillaud, M., Yvinec, M.: Dynamic location in an arrangement of line segments in the plane. Algorithms Review 2(3), 89–103 (1992)Google Scholar
  6. 6.
    Di Concilio, A.: Point-free geometries: Proximities and quasi-metrics. Mathematics in Computer Science 7(1), 31–42 (2013)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Zoology (Society of Systematic Biologists) 18(3), 259–278 (1969)CrossRefGoogle Scholar
  8. 8.
    Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of voronoi. ACM Transactions on Graphics 4(2), 74–123 (1985)CrossRefMATHGoogle Scholar
  9. 9.
    Hossain, M.Z., Wahid, M.A., Hasan, M., Amin, M.A.: Analysis of spatial subdivision on gabriel graph. http://www.cvcrbd.org/publications
  10. 10.
    Howe, S.E.: Estimating Regions and Clustering Spatial Data: Analysis and Implementation of Methods Using the Voronoi Diagram. Ph.D. thesis, Brown University, Providence, R.I. (1978)Google Scholar
  11. 11.
    Kao, T., Mount, D.M., Saalfeld, A.: Dynamic maintenance of delaunay triangulations. Tech. rep., College Park, MD, USA (1991)Google Scholar
  12. 12.
    Laloë, D., Moazami-Goudarzi, K., Lenstra, J.A., Marsan, P.A., Azor, P., Baumung, R., Bradley, D.G., Bruford, M.W., Cañón, J., Dolf, G., Dunner, S., Erhardt, G., Hewitt, G., Kantanen, J., Obexer-Ruff, G., Olsaker, I., Rodellar, C., Valentini, A., Wiener, P.: Spatial trends of genetic variation of domestic ruminants in europe. Diversity 2, 932–945 (2010)CrossRefGoogle Scholar
  13. 13.
    Matula, D.W., Sokal, R.R.: Properties of gabriel graphs relevant to geographic variation research and the clustering of points in the plane. Geographical Analysis 12(3), 205–222 (1980)CrossRefGoogle Scholar
  14. 14.
    O’Rourke, J.: Computational geometry in C, 2nd edn. Cambridge University Press, New York (1998)CrossRefMATHGoogle Scholar
  15. 15.
    Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Computational Geometry: Theory and Applications 1(1), 51–64 (1991)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Z. Hossain
    • 1
  • M. A. Wahid
    • 1
  • Mahady Hasan
    • 1
  • M. Ashraful Amin
    • 1
  1. 1.Computer Vision and Cybernetics Group, Department of Computer Science and EngineeringIndependent University BangladeshDhakaBangladesh

Personalised recommendations